--- library_name: transformers license: apache-2.0 base_model: SZTAKI-HLT/hubert-base-cc tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: husst-hubert-hungarian results: [] datasets: - ariel-ml/HuSST-augmented --- # husst-hubert-hungarian This model is a fine-tuned version of [SZTAKI-HLT/hubert-base-cc](https://huggingface.co/SZTAKI-HLT/hubert-base-cc) on [ariel-ml/HuSST-augmented](https://huggingface.co/datasets/ariel-ml/HuSST-augmented) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Results It achieves the following results on the evaluation set: ```text precision recall f1-score support 0 0.77 0.90 0.83 697 1 0.79 0.54 0.64 435 2 0.45 0.67 0.54 33 accuracy 0.76 1165 macro avg 0.67 0.70 0.67 1165 weighted avg 0.77 0.76 0.75 1165 ``` ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0