arova-syams commited on
Commit
d960cf6
·
verified ·
1 Parent(s): eabe66d

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ image.png filter=lfs diff=lfs merge=lfs -text
Dataset/BTC-USD.csv ADDED
The diff for this file is too large to render. See raw diff
 
Dataset/btc_future.csv ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Open time,Close
2
+ 2024-01-21,41580.33
3
+ 2024-01-22,39568.02
4
+ 2024-01-23,39897.6
5
+ 2024-01-24,40084.88
6
+ 2024-01-25,39961.09
7
+ 2024-01-26,41823.51
8
+ 2024-01-27,42120.63
9
+ 2024-01-28,42031.06
10
+ 2024-01-29,43302.7
11
+ 2024-01-30,42941.1
12
+ 2024-01-31,42580.0
13
+ 2024-02-01,43082.94
14
+ 2024-02-02,43200.0
15
+ 2024-02-03,43011.09
16
+ 2024-02-04,42582.88
17
+ 2024-02-05,42708.7
18
+ 2024-02-06,43098.95
19
+ 2024-02-07,44349.6
20
+ 2024-02-08,45288.65
21
+ 2024-02-09,47132.77
22
+ 2024-02-10,47751.09
23
+ 2024-02-11,48299.99
24
+ 2024-02-12,49917.27
25
+ 2024-02-13,49699.59
26
+ 2024-02-14,51795.17
27
+ 2024-02-15,51880.0
28
+ 2024-02-16,52124.11
29
+ 2024-02-17,51642.64
30
+ 2024-02-18,52137.67
31
+ 2024-02-19,51774.73
32
+ 2024-02-20,52258.82
33
+ 2024-02-21,51849.39
34
+ 2024-02-22,51288.42
35
+ 2024-02-23,50744.15
36
+ 2024-02-24,51568.22
37
+ 2024-02-25,51728.85
38
+ 2024-02-26,54476.47
39
+ 2024-02-27,57037.34
40
+ 2024-02-28,62432.1
41
+ 2024-02-29,61130.98
42
+ 2024-03-01,62387.9
43
+ 2024-03-02,61987.28
44
+ 2024-03-03,63113.97
45
+ 2024-03-04,68245.71
46
+ 2024-03-05,63724.01
47
+ 2024-03-06,66074.04
48
+ 2024-03-07,66823.17
49
+ 2024-03-08,68124.19
50
+ 2024-03-09,68313.27
51
+ 2024-03-10,68955.88
52
+ 2024-03-11,72078.1
53
+ 2024-03-12,71452.01
54
+ 2024-03-13,73072.41
55
+ 2024-03-14,71388.94
56
+ 2024-03-15,69499.85
57
+ 2024-03-16,65300.63
58
+ 2024-03-17,68393.48
59
+ 2024-03-18,67609.99
60
+ 2024-03-19,61937.4
61
+ 2024-03-20,67840.51
62
+ 2024-03-21,65501.27
63
+ 2024-03-22,63796.64
64
+ 2024-03-23,63990.01
65
+ 2024-03-24,67209.99
66
+ 2024-03-25,69880.01
67
+ 2024-03-26,69988.0
68
+ 2024-03-27,69469.99
69
+ 2024-03-28,70780.6
70
+ 2024-03-29,69850.54
71
+ 2024-03-30,69582.18
72
+ 2024-03-31,71280.01
73
+ 2024-04-01,69649.8
74
+ 2024-04-02,65463.99
75
+ 2024-04-03,65963.28
76
+ 2024-04-04,68487.79
77
+ 2024-04-05,67820.62
78
+ 2024-04-06,68896.0
79
+ 2024-04-07,69360.39
80
+ 2024-04-08,71620.0
81
+ 2024-04-09,69146.0
82
+ 2024-04-10,70631.08
83
+ 2024-04-11,70006.23
84
+ 2024-04-12,67116.52
85
+ 2024-04-13,63924.51
86
+ 2024-04-14,65661.84
87
+ 2024-04-15,63419.99
88
+ 2024-04-16,63793.39
89
+ 2024-04-17,61277.37
90
+ 2024-04-18,63470.08
91
+ 2024-04-19,63818.01
92
+ 2024-04-20,64940.59
93
+ 2024-04-21,64941.15
94
+ 2024-04-22,66819.32
95
+ 2024-04-23,66414.0
96
+ 2024-04-24,64289.59
97
+ 2024-04-25,64498.34
98
+ 2024-04-26,63770.01
99
+ 2024-04-27,63461.98
100
+ 2024-04-28,63118.62
101
+ 2024-04-29,63866.0
102
+ 2024-04-30,60672.0
103
+ 2024-05-01,58364.97
104
+ 2024-05-02,59060.61
105
+ 2024-05-03,62882.01
106
+ 2024-05-04,63892.04
107
+ 2024-05-05,64012.0
108
+ 2024-05-06,63165.19
109
+ 2024-05-07,62312.08
110
+ 2024-05-08,61193.03
111
+ 2024-05-09,63074.01
112
+ 2024-05-10,60799.99
113
+ 2024-05-11,60825.99
114
+ 2024-05-12,61483.99
115
+ 2024-05-13,62940.08
116
+ 2024-05-14,61577.49
117
+ 2024-05-15,66206.5
118
+ 2024-05-16,65235.21
119
+ 2024-05-17,67024.0
120
+ 2024-05-18,66915.2
121
+ 2024-05-19,66274.01
122
+ 2024-05-20,71446.62
123
+ 2024-05-21,70148.34
124
+ 2024-05-22,69166.62
125
+ 2024-05-23,67969.65
126
+ 2024-05-24,68549.99
127
+ 2024-05-25,69290.57
128
+ 2024-05-26,68507.67
129
+ 2024-05-27,69436.43
130
+ 2024-05-28,68398.39
131
+ 2024-05-29,67652.42
132
+ 2024-05-30,68352.17
133
+ 2024-05-31,67540.01
134
+ 2024-06-01,67766.85
135
+ 2024-06-02,67765.63
136
+ 2024-06-03,68809.9
137
+ 2024-06-04,70537.84
138
+ 2024-06-05,71108.0
139
+ 2024-06-06,70799.06
140
+ 2024-06-07,69355.6
141
+ 2024-06-08,69310.46
142
+ 2024-06-09,69648.14
143
+ 2024-06-10,69540.0
144
+ 2024-06-11,67314.24
145
+ 2024-06-12,68263.99
146
+ 2024-06-13,66773.01
147
+ 2024-06-14,66043.99
148
+ 2024-06-15,66228.25
149
+ 2024-06-16,66676.87
150
+ 2024-06-17,66504.33
151
+ 2024-06-18,65175.32
152
+ 2024-06-19,64974.37
153
+ 2024-06-20,64869.99
154
+ 2024-06-21,64143.56
155
+ 2024-06-22,64262.01
156
+ 2024-06-23,63210.01
157
+ 2024-06-24,60293.3
158
+ 2024-06-25,61806.01
159
+ 2024-06-26,60864.99
160
+ 2024-06-27,61706.47
161
+ 2024-06-28,60427.84
162
+ 2024-06-29,60986.68
163
+ 2024-06-30,62772.01
164
+ 2024-07-01,62899.99
165
+ 2024-07-02,62135.47
166
+ 2024-07-03,60208.58
167
+ 2024-07-04,57050.01
168
+ 2024-07-05,56628.79
169
+ 2024-07-06,58230.13
170
+ 2024-07-07,55857.81
171
+ 2024-07-08,56714.62
172
+ 2024-07-09,58050.0
173
+ 2024-07-10,57725.85
174
+ 2024-07-11,57339.89
175
+ 2024-07-12,57889.1
176
+ 2024-07-13,59204.02
177
+ 2024-07-14,60797.91
178
+ 2024-07-15,64724.14
179
+ 2024-07-16,65043.99
180
+ 2024-07-17,64087.99
181
+ 2024-07-18,63987.92
182
+ 2024-07-19,66660.0
183
+ 2024-07-20,67139.96
184
+ 2024-07-21,68165.34
185
+ 2024-07-22,67532.01
186
+ 2024-07-23,65936.01
187
+ 2024-07-24,65376.0
188
+ 2024-07-25,65799.95
189
+ 2024-07-26,67907.99
190
+ 2024-07-27,67896.5
191
+ 2024-07-28,68249.88
192
+ 2024-07-29,66784.69
193
+ 2024-07-30,66188.0
194
+ 2024-07-31,64628.0
195
+ 2024-08-01,65354.02
196
+ 2024-08-02,61498.33
197
+ 2024-08-03,60697.99
198
+ 2024-08-04,58161.0
199
+ 2024-08-05,54018.81
200
+ 2024-08-06,56022.01
201
+ 2024-08-07,55134.16
202
+ 2024-08-08,61685.99
203
+ 2024-08-09,60837.99
204
+ 2024-08-10,60923.51
205
+ 2024-08-11,58712.59
206
+ 2024-08-12,59346.64
207
+ 2024-08-13,60587.15
208
+ 2024-08-14,58683.39
209
+ 2024-08-15,57541.06
210
+ 2024-08-16,58874.6
211
+ 2024-08-17,59491.99
212
+ 2024-08-18,58427.35
213
+ 2024-08-19,59438.5
214
+ 2024-08-20,59013.8
215
+ 2024-08-21,61156.03
216
+ 2024-08-22,60375.84
217
+ 2024-08-23,64037.24
218
+ 2024-08-24,64157.01
219
+ 2024-08-25,64220.0
220
+ 2024-08-26,62834.0
221
+ 2024-08-27,59415.0
222
+ 2024-08-28,59034.9
223
+ 2024-08-29,59359.01
224
+ 2024-08-30,59123.99
225
+ 2024-08-31,58973.99
226
+ 2024-09-01,57301.86
227
+ 2024-09-02,59132.13
228
+ 2024-09-03,57487.73
229
+ 2024-09-04,57970.9
230
+ 2024-09-05,56180.0
231
+ 2024-09-06,53962.97
232
+ 2024-09-07,54160.86
233
+ 2024-09-08,54869.95
234
+ 2024-09-09,57042.0
235
+ 2024-09-10,57635.99
236
+ 2024-09-11,57338.0
237
+ 2024-09-12,58132.32
238
+ 2024-09-13,60498.0
239
+ 2024-09-14,59993.03
240
+ 2024-09-15,59132.0
241
+ 2024-09-16,58213.99
242
+ 2024-09-17,60313.99
243
+ 2024-09-18,61759.99
244
+ 2024-09-19,62947.99
245
+ 2024-09-20,63201.05
246
+ 2024-09-21,63348.96
247
+ 2024-09-22,63578.76
248
+ 2024-09-23,63339.99
249
+ 2024-09-24,64262.7
250
+ 2024-09-25,63152.01
251
+ 2024-09-26,65173.99
252
+ 2024-09-27,65769.95
253
+ 2024-09-28,65858.0
254
+ 2024-09-29,65602.01
255
+ 2024-09-30,63327.59
256
+ 2024-10-01,60805.78
257
+ 2024-10-02,60649.28
258
+ 2024-10-03,60752.71
259
+ 2024-10-04,62086.0
260
+ 2024-10-05,62058.0
261
+ 2024-10-06,62819.91
262
+ 2024-10-07,62224.0
263
+ 2024-10-08,62160.49
264
+ 2024-10-09,60636.02
265
+ 2024-10-10,60326.39
266
+ 2024-10-11,62540.0
267
+ 2024-10-12,63206.22
268
+ 2024-10-13,62870.02
269
+ 2024-10-14,66083.99
270
+ 2024-10-15,67074.14
271
+ 2024-10-16,67620.01
272
+ 2024-10-17,67421.78
273
+ 2024-10-18,68428.0
274
+ 2024-10-19,68378.0
275
+ 2024-10-20,69031.99
276
+ 2024-10-21,67377.5
277
+ 2024-10-22,67426.0
278
+ 2024-10-23,66668.65
279
+ 2024-10-24,68198.28
280
+ 2024-10-25,66698.33
281
+ 2024-10-26,67092.76
282
+ 2024-10-27,68021.7
283
+ 2024-10-28,69962.21
284
+ 2024-10-29,72736.42
285
+ 2024-10-30,72344.74
286
+ 2024-10-31,70292.01
287
+ 2024-11-01,69496.01
288
+ 2024-11-02,69374.74
289
+ 2024-11-03,68775.99
290
+ 2024-11-04,67850.01
291
+ 2024-11-05,69372.01
292
+ 2024-11-06,75571.99
293
+ 2024-11-07,75857.89
294
+ 2024-11-08,76509.78
295
+ 2024-11-09,76677.46
296
+ 2024-11-10,80370.01
297
+ 2024-11-11,88647.99
298
+ 2024-11-12,87952.01
299
+ 2024-11-13,90375.2
300
+ 2024-11-14,87325.59
301
+ 2024-11-15,91032.07
302
+ 2024-11-16,90586.92
303
+ 2024-11-17,89855.99
304
+ 2024-11-18,90464.08
305
+ 2024-11-19,92310.79
306
+ 2024-11-20,94286.56
307
+ 2024-11-21,98317.12
308
+ 2024-11-22,98892.0
309
+ 2024-11-23,97672.4
310
+ 2024-11-24,97900.04
311
+ 2024-11-25,93010.01
312
+ 2024-11-26,91965.16
313
+ 2024-11-27,95863.11
314
+ 2024-11-28,95643.98
315
+ 2024-11-29,97460.0
316
+ 2024-11-30,96407.99
317
+ 2024-12-01,97185.18
318
+ 2024-12-02,95840.62
319
+ 2024-12-03,95849.69
320
+ 2024-12-04,98587.32
321
+ 2024-12-05,96945.63
322
+ 2024-12-06,99740.84
323
+ 2024-12-07,99831.99
324
+ 2024-12-08,101109.59
325
+ 2024-12-09,97276.47
326
+ 2024-12-10,96593.0
327
+ 2024-12-11,101125.0
328
+ 2024-12-12,100004.29
329
+ 2024-12-13,101424.25
330
+ 2024-12-14,101420.0
331
+ 2024-12-15,104463.99
332
+ 2024-12-16,106058.66
333
+ 2024-12-17,106133.74
334
+ 2024-12-18,100204.01
335
+ 2024-12-19,97461.86
336
+ 2024-12-20,97805.44
337
+ 2024-12-21,97291.99
338
+ 2024-12-22,95186.27
339
+ 2024-12-23,94881.47
340
+ 2024-12-24,98663.58
341
+ 2024-12-25,99429.6
342
+ 2024-12-26,95791.6
343
+ 2024-12-27,94299.03
344
+ 2024-12-28,95300.0
345
+ 2024-12-29,93738.2
346
+ 2024-12-30,92792.05
347
+ 2024-12-31,93576.0
348
+ 2025-01-01,94591.79
349
+ 2025-01-02,96984.79
350
+ 2025-01-03,98174.18
351
+ 2025-01-04,98220.5
352
+ 2025-01-05,98363.61
353
+ 2025-01-06,102235.6
354
+ 2025-01-07,96954.61
355
+ 2025-01-08,95060.61
356
+ 2025-01-09,92552.49
357
+ 2025-01-10,94726.11
358
+ 2025-01-11,94599.99
359
+ 2025-01-12,94545.06
360
+ 2025-01-13,94536.1
361
+ 2025-01-14,96560.86
362
+ 2025-01-15,100497.35
363
+ 2025-01-16,99987.3
364
+ 2025-01-17,104077.48
365
+ 2025-01-18,104556.23
366
+ 2025-01-19,101331.57
367
+ 2025-01-20,102260.01
368
+ 2025-01-21,106143.82
369
+ 2025-01-22,103706.66
370
+ 2025-01-23,103910.34
371
+ 2025-01-24,104870.5
372
+ 2025-01-25,104746.85
373
+ 2025-01-26,102620.0
374
+ 2025-01-27,102082.83
375
+ 2025-01-28,101335.52
376
+ 2025-01-29,103733.24
377
+ 2025-01-30,104722.94
378
+ 2025-01-31,102429.56
379
+ 2025-02-01,100635.65
380
+ 2025-02-02,97700.59
381
+ 2025-02-03,101328.52
382
+ 2025-02-04,97763.13
383
+ 2025-02-05,96612.43
384
+ 2025-02-06,96554.35
385
+ 2025-02-07,96506.8
386
+ 2025-02-08,96444.74
387
+ 2025-02-09,96462.75
388
+ 2025-02-10,97430.82
389
+ 2025-02-11,95778.2
390
+ 2025-02-12,97869.99
391
+ 2025-02-13,96608.14
392
+ 2025-02-14,97500.48
393
+ 2025-02-15,97569.66
394
+ 2025-02-16,96118.12
395
+ 2025-02-17,95780.0
396
+ 2025-02-18,95671.74
397
+ 2025-02-19,96644.37
398
+ 2025-02-20,98305.0
399
+ 2025-02-21,96181.98
400
+ 2025-02-22,96551.01
401
+ 2025-02-23,96258.0
402
+ 2025-02-24,91552.88
403
+ 2025-02-25,88680.4
404
+ 2025-02-26,84250.09
405
+ 2025-02-27,84708.58
406
+ 2025-02-28,84349.94
407
+ 2025-03-01,86064.53
408
+ 2025-03-02,94270.0
409
+ 2025-03-03,86220.61
410
+ 2025-03-04,87281.98
411
+ 2025-03-05,90606.01
412
+ 2025-03-06,89931.89
413
+ 2025-03-07,86801.75
414
+ 2025-03-08,86222.45
415
+ 2025-03-09,80734.37
416
+ 2025-03-10,78595.86
417
+ 2025-03-11,82932.99
418
+ 2025-03-12,83680.12
419
+ 2025-03-13,81115.78
420
+ 2025-03-14,83983.2
421
+ 2025-03-15,84338.44
422
+ 2025-03-16,82574.53
423
+ 2025-03-17,84010.03
424
+ 2025-03-18,82715.03
425
+ 2025-03-19,86845.94
426
+ 2025-03-20,84223.39
427
+ 2025-03-21,84088.79
428
+ 2025-03-22,83840.59
429
+ 2025-03-23,86082.5
430
+ 2025-03-24,87498.16
431
+ 2025-03-25,87392.87
432
+ 2025-03-26,86909.17
433
+ 2025-03-27,87232.01
434
+ 2025-03-28,84424.38
435
+ 2025-03-29,82648.54
436
+ 2025-03-30,82389.99
437
+ 2025-03-31,82550.01
438
+ 2025-04-01,85158.34
439
+ 2025-04-02,82516.29
440
+ 2025-04-03,83213.09
441
+ 2025-04-04,83889.87
442
+ 2025-04-05,83537.99
443
+ 2025-04-06,78430.0
444
+ 2025-04-07,79163.24
445
+ 2025-04-08,76322.42
446
+ 2025-04-09,82615.22
447
+ 2025-04-10,79607.3
448
+ 2025-04-11,83423.84
449
+ 2025-04-12,85276.9
450
+ 2025-04-13,83760.0
451
+ 2025-04-14,84591.58
452
+ 2025-04-15,83643.99
453
+ 2025-04-16,84030.38
454
+ 2025-04-17,84947.91
455
+ 2025-04-18,84474.69
456
+ 2025-04-19,85077.01
457
+ 2025-04-20,85179.24
458
+ 2025-04-21,87516.23
459
+ 2025-04-22,93442.99
460
+ 2025-04-23,93691.08
461
+ 2025-04-24,93980.47
462
+ 2025-04-25,94638.68
463
+ 2025-04-26,94628.0
464
+ 2025-04-27,93749.3
465
+ 2025-04-28,95011.18
466
+ 2025-04-29,94256.82
467
+ 2025-04-30,94172.0
468
+ 2025-05-01,96489.91
469
+ 2025-05-02,96887.14
470
+ 2025-05-03,95856.42
471
+ 2025-05-04,94277.62
472
+ 2025-05-05,94733.68
473
+ 2025-05-06,96834.02
474
+ 2025-05-07,97030.5
475
+ 2025-05-08,103261.6
476
+ 2025-05-09,103054.24
Notebook.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,3 +1,113 @@
 
 
 
 
 
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Bitcoin Price Prediction with LSTM
2
+
3
+ ## Project Overview
4
+ This project aims to predict Bitcoin (BTC) prices for the next 60 days using a Long Short-Term Memory (LSTM) neural network. The dataset used contains historical BTC/USD prices from 2014 to early 2024. The project leverages PyTorch for deep learning and includes data preprocessing, feature engineering, and model evaluation.
5
+
6
  ---
7
+
8
+ ## Table of Contents
9
+ 1. [Introduction](#introduction)
10
+ 2. [Dataset Description](#dataset-description)
11
+ 3. [Project Workflow](#project-workflow)
12
+ 4. [Model Architecture](#model-architecture)
13
+ 5. [Results](#results)
14
+ 6. [How to Run](#how-to-run)
15
+ 7. [Future Work](#future-work)
16
+ 8. [References](#references)
17
+
18
  ---
19
+
20
+ ## Introduction
21
+ Bitcoin is a highly volatile cryptocurrency, making price prediction a challenging task. This project uses sequential data modeling with LSTM to capture patterns in historical BTC prices and provide reliable predictions.
22
+
23
+ ---
24
+
25
+ ## Dataset Description
26
+ - **Source**: Kaggle
27
+ - **File**: `Dataset/BTC-USD.csv`
28
+ - **Columns**: `Date`, `Open`, `High`, `Low`, `Close`, `Adj Close`, `Volume`
29
+ - **Timeframe**: 2014 to early 2024
30
+ - **Frequency**: Minute-level data aggregated to daily prices.
31
+
32
+ ---
33
+
34
+ ## Project Workflow
35
+ ### 1. Data Preparation
36
+ - Import libraries and load the dataset.
37
+ - Perform initial exploration to understand the data structure.
38
+
39
+ ### 2. Data Cleaning
40
+ - Handle missing values and duplicates.
41
+ - Normalize and standardize the data for better model performance.
42
+
43
+ ### 3. Exploratory Data Analysis (EDA)
44
+ - Visualize trends in BTC prices and trading volume.
45
+ - Analyze correlations between features.
46
+
47
+ ### 4. Feature Engineering
48
+ - Create sequences of 30 days as input features.
49
+ - Scale features using `MinMaxScaler`.
50
+
51
+ ### 5. Modeling
52
+ - Build LSTM and GRU models using PyTorch.
53
+ - Train the models with Mean Squared Error (MSE) loss and Adam optimizer.
54
+
55
+ ### 6. Evaluation
56
+ - Evaluate the model using Root Mean Squared Error (RMSE).
57
+ - Visualize predictions against actual prices.
58
+
59
+ ### 7. Prediction
60
+ - Predict BTC prices for the next 60 days.
61
+ - Compare predictions with actual future prices.
62
+
63
+ ---
64
+
65
+ ## Model Architecture
66
+ The LSTM model consists of:
67
+ - **Input Layer**: Sequence of 30 days of closing prices.
68
+ - **Hidden Layers**: 2 LSTM layers with 64 hidden units.
69
+ - **Output Layer**: Single neuron for predicting the next day's price.
70
+
71
+ ---
72
+
73
+ ## Results
74
+ - **LSTM Test RMSE**: ~1,118 USD
75
+ - **GRU Test RMSE**: ~21,445 USD
76
+ - The LSTM model outperformed the GRU model, demonstrating its ability to capture sequential patterns in BTC prices.
77
+
78
+ ![Bitcoin Price Prediction](output_prediction.png)
79
+
80
+ ---
81
+
82
+ ## How to Run
83
+ 1. Clone the repository:
84
+ ```bash
85
+ git clone <repository-url>
86
+ cd Bitcoin-Prediction
87
+ ```
88
+
89
+ 2. Install dependencies:
90
+ ```bash
91
+ pip install -r requirements.txt
92
+ ```
93
+
94
+ 3. Run the Jupyter Notebook:
95
+ ```bash
96
+ jupyter notebook Notebook.ipynb
97
+ ```
98
+
99
+ 4. Follow the steps in the notebook to train the model and visualize predictions.
100
+
101
+ ---
102
+
103
+ ## Future Work
104
+ - Add additional features such as macroeconomic indicators, Moving Average, RSI or sentiment analysis.
105
+ - Perform hyperparameter tuning to further improve model performance.
106
+ - Deploy the model as a web application for real-time predictions.
107
+
108
+ ---
109
+
110
+ ## References
111
+ - Kaggle Dataset: [BTC-USD Historical Data](https://www.kaggle.com/)
112
+ - PyTorch Documentation: [https://pytorch.org/](https://pytorch.org/)
113
+ - CoinGecko API: [https://www.coingecko.com/](https://www.coingecko.com/)
image.png ADDED

Git LFS Details

  • SHA256: 0c5122101a82c67897ae6400505e84ce25c65b9f8aa938689d81b1b92e6db515
  • Pointer size: 131 Bytes
  • Size of remote file: 154 kB
lstm_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd1167249182f33bc6c092b3bc5dae23b392775e21068d44e0e4443d407acee
3
+ size 206069
output_prediction.png ADDED
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ pandas==1.5.3
2
+ numpy==1.24.3
3
+ matplotlib==3.7.1
4
+ seaborn==0.12.2
5
+ torch==2.0.1
6
+ scikit-learn==1.2.2
7
+ pycoingecko==3.1.0
8
+ jupyter==1.0.0