File size: 9,726 Bytes
27bb22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: BAAI/bge-small-en-v1.5
metrics:
- accuracy
widget:
- text: People:Based partly on Chinese military journals, internal speeches by senior
    People's Liberation Army (PLA) officers, and patent data, the paper charts more
    than 50 years of the PLA navy's often-glacial nuclear submarine development.
- text: Qingdao:Chinese Navy's nuclear-powered submarine Long March 11 takes part
    in a naval parade off the eastern port city of Qingdao to mark the 70th anniversary
    of the founding of the Chinese People's Liberation Army Navy.
- text: warfare drills:Anti-submarine warfare drills are increasing, as are deployments
    of sub-hunting P-8 Poseidon aircraft around Southeast Asia and the Indian Ocean.
- text: devices:The research also details potential breakthroughs in specific areas,
    including pump-jet propulsion and internal quieting devices, based on 'imitative
    innovation' of Russian technology.
- text: axe 73,800 jobs:State-run miner Coal India Limited (CIL), which has the biggest
    workforce among listed government undertakings, is likely to axe 73,800 jobs by
    2050 as India pledges to move from fossil fuels to green power, according to a
    research report released by the US-based think tank Global Energy Monitor (GEM)
    on October 10.
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Aspect Model with BAAI/bge-small-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7874720357941835
      name: Accuracy
---

# SetFit Aspect Model with BAAI/bge-small-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. **Use this SetFit model to filter these possible aspect span candidates.**
3. Use a SetFit model to classify the filtered aspect span candidates.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [asadnaqvi/setfitabsa-aspect](https://huggingface.co/asadnaqvi/setfitabsa-aspect)
- **SetFitABSA Polarity Model:** [asadnaqvi/setfitabsa-polarity](https://huggingface.co/asadnaqvi/setfitabsa-polarity)
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label     | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspect    | <ul><li>"visit:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>"Mohammed bin Salman:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>'legitimacy:The trip to India is evidently timed to burnish his legitimacy after the international opprobrium that followed the murder of The Washington Post journalist Jamal Khashoggi.'</li></ul> |
| no aspect | <ul><li>"Saudi Arabia:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>"MBS:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>"India:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li></ul>                                                                               |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7875   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "asadnaqvi/setfitabsa-aspect",
    "asadnaqvi/setfitabsa-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 8   | 25.2939 | 40  |

| Label     | Training Sample Count |
|:----------|:----------------------|
| no aspect | 248                   |
| aspect    | 99                    |

### Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch      | Step    | Training Loss | Validation Loss |
|:----------:|:-------:|:-------------:|:---------------:|
| 0.0018     | 1       | 0.2598        | -               |
| 0.0893     | 50      | 0.2458        | 0.2552          |
| 0.1786     | 100     | 0.2418        | 0.2527          |
| **0.2679** | **150** | **0.2427**    | **0.2459**      |
| 0.3571     | 200     | 0.1272        | 0.2566          |
| 0.4464     | 250     | 0.0075        | 0.3028          |
| 0.5357     | 300     | 0.0023        | 0.3251          |
| 0.625      | 350     | 0.0021        | 0.328           |
| 0.7143     | 400     | 0.0037        | 0.355           |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.40.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->