--- language: - en --- # Model Card for XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. # Model Details ## Model Description XLM-RoBERTa finetuned on NER. - **Developed by:** Asahi Ushio - **Shared by [Optional]:** Hugging Face - **Model type:** Token Classification - **Language(s) (NLP):** en - **License:** More information needed - **Related Models:** XLM-RoBERTa - **Parent Model:** XLM-RoBERTa - **Resources for more information:** - [GitHub Repo](https://github.com/asahi417/tner) - [Associated Paper](https://arxiv.org/abs/2209.12616) - [Space](https://huggingface.co/spaces/akdeniz27/turkish-named-entity-recognition) # Uses ## Direct Use Token Classification ## Downstream Use [Optional] This model can be used in conjunction with the [tner library](https://github.com/asahi417/tner). ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data An NER dataset contains a sequence of tokens and tags for each split (usually `train`/`validation`/`test`), ```python { 'train': { 'tokens': [ ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'], ['From', 'Green', 'Newsfeed', ':', 'AHFA', 'extends', 'deadline', 'for', 'Sage', 'Award', 'to', 'Nov', '.', '5', 'http://tinyurl.com/24agj38'], ... ], 'tags': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... ] }, 'validation': ..., 'test': ..., } ``` with a dictionary to map a label to its index (`label2id`) as below. ```python {"O": 0, "B-ORG": 1, "B-MISC": 2, "B-PER": 3, "I-PER": 4, "B-LOC": 5, "I-ORG": 6, "I-MISC": 7, "I-LOC": 8} ``` ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times **Layer_norm_eps:** 1e-05, **Num_attention_heads:** 12, **Num_hidden_layers:** 12, **Vocab_size:** 250002 # Evaluation ## Testing Data, Factors & Metrics ### Testing Data See [dataset card](https://github.com/asahi417/tner/blob/master/DATASET_CARD.md) for full dataset lists ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.eacl-demos.7", pages = "53--62", } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Asahi Ushio in collaboration with Ezi Ozoani and the Hugging Face team. # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model.
Click to expand ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5") ```