End of training
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: facebook/nllb-200-distilled-600M
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: nllb-lora-zh2Paiwan
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# nllb-lora-zh2Paiwan
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 7.3264
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.001
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 20
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
53 |
+
| 7.4959 | 1.0 | 201 | 7.4363 |
|
54 |
+
| 7.4622 | 2.0 | 402 | 7.4087 |
|
55 |
+
| 7.4338 | 3.0 | 603 | 7.3922 |
|
56 |
+
| 7.4289 | 4.0 | 804 | 7.3816 |
|
57 |
+
| 7.3944 | 5.0 | 1005 | 7.3703 |
|
58 |
+
| 7.3907 | 6.0 | 1206 | 7.3608 |
|
59 |
+
| 7.3872 | 7.0 | 1407 | 7.3555 |
|
60 |
+
| 7.3554 | 8.0 | 1608 | 7.3516 |
|
61 |
+
| 7.3666 | 9.0 | 1809 | 7.3456 |
|
62 |
+
| 7.3666 | 10.0 | 2010 | 7.3418 |
|
63 |
+
| 7.3431 | 11.0 | 2211 | 7.3382 |
|
64 |
+
| 7.353 | 12.0 | 2412 | 7.3357 |
|
65 |
+
| 7.3402 | 13.0 | 2613 | 7.3332 |
|
66 |
+
| 7.3323 | 14.0 | 2814 | 7.3315 |
|
67 |
+
| 7.3432 | 15.0 | 3015 | 7.3294 |
|
68 |
+
| 7.3315 | 16.0 | 3216 | 7.3274 |
|
69 |
+
| 7.3263 | 17.0 | 3417 | 7.3277 |
|
70 |
+
| 7.3086 | 18.0 | 3618 | 7.3268 |
|
71 |
+
| 7.3039 | 19.0 | 3819 | 7.3268 |
|
72 |
+
| 7.2977 | 20.0 | 4020 | 7.3264 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- PEFT 0.15.0
|
78 |
+
- Transformers 4.51.2
|
79 |
+
- Pytorch 2.2.2+cu118
|
80 |
+
- Datasets 3.5.0
|
81 |
+
- Tokenizers 0.21.1
|