mac
commited on
Commit
·
b6b76b9
1
Parent(s):
47301d1
Add interactive model analyzer script
Browse files- Include spacy_model_analyzer.py for model evaluation and testing
- Add installation instructions for streamlit and pandas dependencies
- Enable interactive analysis with real-time entity recognition
- Provide detailed metrics calculation and visualization tools
Author: Asep Muhamad <[email protected]>
- README.md +4 -0
- spacy_model_analyzer.py +145 -0
README.md
CHANGED
@@ -140,6 +140,10 @@ The model was evaluated on 2,987 examples from the training data with the follow
|
|
140 |
You can reproduce these metrics using the included analyzer script:
|
141 |
|
142 |
```bash
|
|
|
|
|
|
|
|
|
143 |
streamlit run spacy_model_analyzer.py
|
144 |
```
|
145 |
|
|
|
140 |
You can reproduce these metrics using the included analyzer script:
|
141 |
|
142 |
```bash
|
143 |
+
# Install required dependencies
|
144 |
+
pip install streamlit pandas
|
145 |
+
|
146 |
+
# Run the analyzer
|
147 |
streamlit run spacy_model_analyzer.py
|
148 |
```
|
149 |
|
spacy_model_analyzer.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import spacy
|
3 |
+
from spacy.training import Example
|
4 |
+
from spacy.scorer import Scorer
|
5 |
+
import re
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Load the NER model
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model(path):
|
11 |
+
return spacy.load(path)
|
12 |
+
|
13 |
+
def parse_training_data(file_path):
|
14 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
15 |
+
lines = f.readlines()
|
16 |
+
|
17 |
+
examples = []
|
18 |
+
tag_pattern = re.compile(r'<([A-Z]+)>(.*?)</\1>')
|
19 |
+
|
20 |
+
for line in lines:
|
21 |
+
line = line.strip()
|
22 |
+
if not line:
|
23 |
+
continue
|
24 |
+
|
25 |
+
text = ""
|
26 |
+
ents = []
|
27 |
+
last_end = 0
|
28 |
+
|
29 |
+
for match in tag_pattern.finditer(line):
|
30 |
+
# Add the text before the current tag
|
31 |
+
text += line[last_end:match.start()]
|
32 |
+
|
33 |
+
# The entity text
|
34 |
+
entity_text = match.group(2)
|
35 |
+
entity_label = match.group(1)
|
36 |
+
|
37 |
+
start_char = len(text)
|
38 |
+
text += entity_text
|
39 |
+
end_char = len(text)
|
40 |
+
|
41 |
+
ents.append((start_char, end_char, entity_label))
|
42 |
+
|
43 |
+
last_end = match.end()
|
44 |
+
|
45 |
+
# Add any remaining text after the last tag
|
46 |
+
text += line[last_end:]
|
47 |
+
|
48 |
+
if text:
|
49 |
+
# Remove duplicates and sort
|
50 |
+
unique_ents = sorted(list(set(ents)))
|
51 |
+
examples.append({"text": text.lower(), "ents": unique_ents})
|
52 |
+
|
53 |
+
return examples
|
54 |
+
|
55 |
+
def evaluate_model(nlp, examples):
|
56 |
+
scorer = Scorer()
|
57 |
+
example_list = []
|
58 |
+
skipped_examples = 0
|
59 |
+
for ex in examples:
|
60 |
+
try:
|
61 |
+
doc = nlp.make_doc(ex["text"])
|
62 |
+
gold_ents = ex["ents"]
|
63 |
+
|
64 |
+
gold_dict = {"entities": gold_ents}
|
65 |
+
|
66 |
+
example = Example.from_dict(doc, gold_dict)
|
67 |
+
pred_doc = nlp(example.predicted)
|
68 |
+
|
69 |
+
aligned_example = Example(pred_doc, example.reference)
|
70 |
+
example_list.append(aligned_example)
|
71 |
+
except ValueError as e:
|
72 |
+
# This will catch alignment errors
|
73 |
+
st.warning(f"Skipping an example due to alignment issues: {ex['text'][:50]}... Error: {e}")
|
74 |
+
skipped_examples += 1
|
75 |
+
continue
|
76 |
+
|
77 |
+
st.info(f"Total examples evaluated: {len(example_list)}. Skipped: {skipped_examples}.")
|
78 |
+
if not example_list:
|
79 |
+
return {}
|
80 |
+
scores = scorer.score(example_list)
|
81 |
+
return scores
|
82 |
+
|
83 |
+
nlp = load_model(".")
|
84 |
+
|
85 |
+
# Streamlit app
|
86 |
+
st.title("Indonesian NER SpaCy Model Analyzer")
|
87 |
+
|
88 |
+
st.header("Model Information")
|
89 |
+
st.write(f"**Language:** {nlp.lang}")
|
90 |
+
st.write(f"**Pipeline:** {', '.join(nlp.pipe_names)}")
|
91 |
+
st.write(f"**Labels:** {', '.join(nlp.get_pipe('ner').labels)}")
|
92 |
+
|
93 |
+
st.header("Model Evaluation")
|
94 |
+
evaluation_data = parse_training_data('../data_training.txt')
|
95 |
+
scores = evaluate_model(nlp, evaluation_data)
|
96 |
+
|
97 |
+
if scores:
|
98 |
+
# Overall scores
|
99 |
+
st.subheader("Overall Scores")
|
100 |
+
overall_scores = {
|
101 |
+
"Precision": scores.get("ents_p", 0),
|
102 |
+
"Recall": scores.get("ents_r", 0),
|
103 |
+
"F1-score": scores.get("ents_f", 0),
|
104 |
+
}
|
105 |
+
st.table(pd.DataFrame([overall_scores]))
|
106 |
+
|
107 |
+
# Scores per entity
|
108 |
+
st.subheader("Scores per Entity")
|
109 |
+
per_entity_scores = []
|
110 |
+
for label, metrics in scores.get("ents_per_type", {}).items():
|
111 |
+
per_entity_scores.append({
|
112 |
+
"Entity": label,
|
113 |
+
"Precision": metrics.get("p", 0),
|
114 |
+
"Recall": metrics.get("r", 0),
|
115 |
+
"F1-score": metrics.get("f", 0),
|
116 |
+
})
|
117 |
+
|
118 |
+
if per_entity_scores:
|
119 |
+
df_scores = pd.DataFrame(per_entity_scores)
|
120 |
+
# Sort alphabetically to have a consistent order before numbering
|
121 |
+
df_scores = df_scores.sort_values(by="Entity", ascending=True)
|
122 |
+
# Add a unique number ID column
|
123 |
+
df_scores.insert(0, '#', range(1, 1 + len(df_scores)))
|
124 |
+
st.table(df_scores)
|
125 |
+
else:
|
126 |
+
st.write("No per-entity scores available.")
|
127 |
+
else:
|
128 |
+
st.write("Could not calculate scores. Please check the training data format.")
|
129 |
+
|
130 |
+
|
131 |
+
st.header("Analyze Text")
|
132 |
+
text_input = st.text_area("Enter text to analyze:", "Presiden Joko Widodo mengunjungi Jakarta hari ini.")
|
133 |
+
|
134 |
+
if text_input:
|
135 |
+
doc = nlp(text_input.lower())
|
136 |
+
st.header("NER Visualization")
|
137 |
+
html = spacy.displacy.render(doc, style="ent", jupyter=False)
|
138 |
+
st.html(html)
|
139 |
+
|
140 |
+
st.header("Named Entities")
|
141 |
+
ents = [(ent.text, ent.label_) for ent in doc.ents]
|
142 |
+
if ents:
|
143 |
+
st.table(ents)
|
144 |
+
else:
|
145 |
+
st.write("No entities found.")
|