--- library_name: peft license: mit base_model: Salesforce/blip2-flan-t5-xl tags: - generated_from_trainer datasets: - arrow metrics: - f1 model-index: - name: blip2_lora_vqa_model results: [] --- # blip2_lora_vqa_model This model is a fine-tuned version of [Salesforce/blip2-flan-t5-xl](https://huggingface.co/Salesforce/blip2-flan-t5-xl) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Exact: 74.8351 - F1: 78.3950 - Total: 1061 - Hasans Exact: 74.8351 - Hasans F1: 78.3950 - Hasans Total: 1061 - Best Exact: 74.8351 - Best Exact Thresh: 0.0 - Best F1: 78.3950 - Best F1 Thresh: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact | F1 | Total | Hasans Exact | Hasans F1 | Hasans Total | Best Exact | Best Exact Thresh | Best F1 | Best F1 Thresh | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-----:|:------------:|:---------:|:------------:|:----------:|:-----------------:|:-------:|:--------------:| | No log | 1.0 | 77 | 0.1769 | 57.3044 | 62.1696 | 1061 | 57.3044 | 62.1696 | 1061 | 57.3044 | 0.0 | 62.1696 | 0.0 | | 1.8287 | 2.0 | 154 | 0.1209 | 63.8077 | 68.4910 | 1061 | 63.8077 | 68.4910 | 1061 | 63.8077 | 0.0 | 68.4910 | 0.0 | | 0.1517 | 3.0 | 231 | 0.0959 | 65.0330 | 69.5182 | 1061 | 65.0330 | 69.5182 | 1061 | 65.0330 | 0.0 | 69.5182 | 0.0 | | 0.1145 | 4.0 | 308 | 0.0863 | 67.9548 | 72.6603 | 1061 | 67.9548 | 72.6603 | 1061 | 67.9548 | 0.0 | 72.6603 | 0.0 | | 0.1145 | 5.0 | 385 | 0.0788 | 70.8765 | 74.6248 | 1061 | 70.8765 | 74.6248 | 1061 | 70.8765 | 0.0 | 74.6248 | 0.0 | | 0.0946 | 6.0 | 462 | 0.0697 | 73.1385 | 76.8465 | 1061 | 73.1385 | 76.8465 | 1061 | 73.1385 | 0.0 | 76.8465 | 0.0 | | 0.0837 | 7.0 | 539 | 0.0724 | 72.3845 | 76.2186 | 1061 | 72.3845 | 76.2186 | 1061 | 72.3845 | 0.0 | 76.2186 | 0.0 | | 0.069 | 8.0 | 616 | 0.0644 | 74.3638 | 77.8250 | 1061 | 74.3638 | 77.8250 | 1061 | 74.3638 | 0.0 | 77.8250 | 0.0 | | 0.069 | 9.0 | 693 | 0.0632 | 73.7041 | 77.3865 | 1061 | 73.7041 | 77.3865 | 1061 | 73.7041 | 0.0 | 77.3865 | 0.0 | | 0.0652 | 10.0 | 770 | 0.0612 | 74.8351 | 78.3950 | 1061 | 74.8351 | 78.3950 | 1061 | 74.8351 | 0.0 | 78.3950 | 0.0 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3