atsuki-yamaguchi commited on
Commit
0ff2adb
·
verified ·
1 Parent(s): 4927d85

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: gemma
4
+ language:
5
+ - my
6
+ - en
7
+ base_model: google/gemma-2-9b
8
+ library_name: transformers
9
+ ---
10
+ # Gemma2 9B for Burmese: 32K vocabulary replacement + Mean target vocabulary initialization + 2x2LS/MTP/512 training
11
+
12
+ This model is built on top of Gemma2 9B adapted for Burmese using 30K target language sentences sampled from CC-100.
13
+
14
+ ## Model Details
15
+
16
+ * **Vocabulary**: This model has a 32K vocabulary trained on Burmese 30K sentences.
17
+ * **Target vocabulary initialization**: The target weights of the embedding were initialized using Mean initialization.
18
+ * **Training**: This model was additionally pre-trained on 30K target language sentences sampled from CC-100. The training was conducted with the 2x2LS/MTP/512 strategies introduced in the paper.
19
+
20
+ ## Model Description
21
+
22
+ - **Language:** Burmese
23
+ - **License:** Gemma Terms of Use
24
+ - **Fine-tuned from model:** google/gemma-2-9b
25
+
26
+
27
+ ## Model Sources
28
+
29
+ - **Repository:** https://github.com/gucci-j/lowres-cve
30
+ - **Paper:** https://arxiv.org/abs/2406.11477
31
+
32
+ ## How to Get Started with the Model
33
+ Use the code below to get started with the model.
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM
36
+
37
+ model = AutoModelForCausalLM.from_pretrained(
38
+ "atsuki-yamaguchi/gemma-2-9b-my-30K-vr-mean"
39
+ )
40
+ tokenizer = AutoTokenizer.from_pretrained(
41
+ "atsuki-yamaguchi/gemma-2-9b-my-30K-vr-mean"
42
+ )
43
+ ```
44
+
45
+
46
+ ## Citation
47
+ ```
48
+ @article{yamaguchi-etal-2024-effectively,
49
+ title={How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?},
50
+ author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
51
+ year={2024},
52
+ journal={ArXiv},
53
+ year={2024},
54
+ volume={abs/2406.11477},
55
+ url={https://arxiv.org/abs/2406.11477},
56
+ }
57
+ ```