--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - nlpguy/T3QM7X - Kukedlc/NeuralSirKrishna-7b --- # T3qm7xNeuralsirkrishna-7B T3qm7xNeuralsirkrishna-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [nlpguy/T3QM7X](https://huggingface.co/nlpguy/T3QM7X) * [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: nlpguy/T3QM7X layer_range: [0, 32] - model: Kukedlc/NeuralSirKrishna-7b layer_range: [0, 32] merge_method: slerp base_model: nlpguy/T3QM7X parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/T3qm7xNeuralsirkrishna-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```