--- library_name: transformers base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-finetuned-samsum results: - task: type: summarization dataset: name: samsum type: samsum metrics: - name: ROUGE-1 type: ROUGE-1 value: 0.44030729209257835 - name: ROUGE-2 type: ROUGE-2 value: 0.21015363722992564 - name: ROUGE-L type: ROUGE-L value: 0.3491351151672408 - name: ROUGE-Lsum type: ROUGE-Lsum value: 0.3492708872856547 language: - en pipeline_tag: summarization metrics: - rouge --- # pegasus-finetuned-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4245 - Rouge-1: 0.4403 - Rouge-2: 0.2102 - Rouge-L: 0.3491 - Rouge-Lsum: 0.3493 ## Model description This would be the 10th best-performing model on the [Papers with Code SAMsum leaderboard](https://paperswithcode.com/sota/text-summarization-on-samsum-corpus), as of April 8, 2025. ## Intended uses & limitations This model is designed for abstractive dialogue summarization. It can take in multi-turn conversations and generate concise summaries. ## How to Use ```Python from transformers import pipeline # Load summarization pipeline model_name = "avanishd/pegasus-finetuned-samsum/" summarizer = pipeline("summarization", model=model_name, tokenizer=model_name) # Sample conversation dialogue = """ John: Hey, are you free tomorrow? Alice: I think so, why? John: Want to catch a movie or grab lunch? Alice: Sure, lunch sounds good. What time? John: Let's say 1 PM at the new place downtown? Alice: Works for me! """ # Generate summary summary = summarizer(dialogue, max_length=60, min_length=15, do_sample=False)[0]['summary_text'] print("Summary:", summary) ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5798 | 0.9992 | 920 | 1.4245 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1