avemio-digital
commited on
Upload 16 files
Browse files- .gitattributes +35 -35
- added_tokens.json +4 -0
- config.json +26 -0
- generation_config.json +6 -0
- latest +1 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- special_tokens_map.json +46 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +716 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|im_end|>": 32769,
|
3 |
+
"<|im_start|>": 32768
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "avemio-digital/GRAG-Mistral7B-v3-SFT-after-CPT-fulldata-new-template",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.40.1",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32832
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.40.1"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step840
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:203ea77fa169dd5e3c24a761887b860818e7c621becef746578efba2480009ab
|
3 |
+
size 4949978080
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffce50353e862690976d69551f2b1b186228ee4338a31c0b54d39a60ceba5d84
|
3 |
+
size 4999819336
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1a1123a57d1e8da1cc5cb5c92e25ad178c2fcfcd8a984619fb084da11dcad13
|
3 |
+
size 4547332088
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14497095680
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|im_start|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<|im_end|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"bos_token": {
|
19 |
+
"content": "<s>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"eos_token": {
|
26 |
+
"content": "</s>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"pad_token": {
|
33 |
+
"content": "</s>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
},
|
39 |
+
"unk_token": {
|
40 |
+
"content": "<unk>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
}
|
46 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,716 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 15.886524822695035,
|
5 |
+
"eval_steps": 80,
|
6 |
+
"global_step": 840,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.6052009456264775,
|
13 |
+
"grad_norm": 897.57861328125,
|
14 |
+
"learning_rate": 1.9047619047619045e-07,
|
15 |
+
"log_odds_chosen": 0.061996445059776306,
|
16 |
+
"log_odds_ratio": -0.7339106202125549,
|
17 |
+
"logits/chosen": -2.475102663040161,
|
18 |
+
"logits/rejected": -2.5303642749786377,
|
19 |
+
"logps/chosen": -1.3030776977539062,
|
20 |
+
"logps/rejected": -1.351835012435913,
|
21 |
+
"loss": 1.9448,
|
22 |
+
"nll_loss": 1.881751298904419,
|
23 |
+
"rewards/accuracies": 0.5,
|
24 |
+
"rewards/chosen": -0.13030776381492615,
|
25 |
+
"rewards/margins": 0.004875739570707083,
|
26 |
+
"rewards/rejected": -0.13518351316452026,
|
27 |
+
"step": 32
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 1.210401891252955,
|
31 |
+
"grad_norm": 555.6674194335938,
|
32 |
+
"learning_rate": 3.809523809523809e-07,
|
33 |
+
"log_odds_chosen": 0.13086628913879395,
|
34 |
+
"log_odds_ratio": -0.6972255110740662,
|
35 |
+
"logits/chosen": -2.408938407897949,
|
36 |
+
"logits/rejected": -2.4563820362091064,
|
37 |
+
"logps/chosen": -1.2012869119644165,
|
38 |
+
"logps/rejected": -1.3022348880767822,
|
39 |
+
"loss": 1.5253,
|
40 |
+
"nll_loss": 1.4454330205917358,
|
41 |
+
"rewards/accuracies": 0.54296875,
|
42 |
+
"rewards/chosen": -0.12012868374586105,
|
43 |
+
"rewards/margins": 0.010094808414578438,
|
44 |
+
"rewards/rejected": -0.13022349774837494,
|
45 |
+
"step": 64
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 1.5130023640661938,
|
49 |
+
"eval_log_odds_chosen": 1.2037408351898193,
|
50 |
+
"eval_log_odds_ratio": -0.2748129367828369,
|
51 |
+
"eval_logits/chosen": -2.1409010887145996,
|
52 |
+
"eval_logits/rejected": -2.1931569576263428,
|
53 |
+
"eval_logps/chosen": -1.156149983406067,
|
54 |
+
"eval_logps/rejected": -2.1107430458068848,
|
55 |
+
"eval_loss": 1.3948438167572021,
|
56 |
+
"eval_nll_loss": 1.5358692407608032,
|
57 |
+
"eval_rewards/accuracies": 1.0,
|
58 |
+
"eval_rewards/chosen": -0.11561501026153564,
|
59 |
+
"eval_rewards/margins": 0.09545929729938507,
|
60 |
+
"eval_rewards/rejected": -0.21107430756092072,
|
61 |
+
"eval_runtime": 0.8754,
|
62 |
+
"eval_samples_per_second": 156.493,
|
63 |
+
"eval_steps_per_second": 5.711,
|
64 |
+
"step": 80
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 1.8156028368794326,
|
68 |
+
"grad_norm": 140.96612548828125,
|
69 |
+
"learning_rate": 4.996892303047305e-07,
|
70 |
+
"log_odds_chosen": 0.16402098536491394,
|
71 |
+
"log_odds_ratio": -0.6756913065910339,
|
72 |
+
"logits/chosen": -2.3939661979675293,
|
73 |
+
"logits/rejected": -2.389753580093384,
|
74 |
+
"logps/chosen": -1.0995960235595703,
|
75 |
+
"logps/rejected": -1.2302087545394897,
|
76 |
+
"loss": 1.3931,
|
77 |
+
"nll_loss": 1.3130543231964111,
|
78 |
+
"rewards/accuracies": 0.49609375,
|
79 |
+
"rewards/chosen": -0.10995960980653763,
|
80 |
+
"rewards/margins": 0.013061259873211384,
|
81 |
+
"rewards/rejected": -0.12302087247371674,
|
82 |
+
"step": 96
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 2.42080378250591,
|
86 |
+
"grad_norm": 3005.20654296875,
|
87 |
+
"learning_rate": 4.958326378681848e-07,
|
88 |
+
"log_odds_chosen": 0.05211365222930908,
|
89 |
+
"log_odds_ratio": -0.7710955142974854,
|
90 |
+
"logits/chosen": -2.4226865768432617,
|
91 |
+
"logits/rejected": -2.4471077919006348,
|
92 |
+
"logps/chosen": -1.8894121646881104,
|
93 |
+
"logps/rejected": -1.878553867340088,
|
94 |
+
"loss": 1.9751,
|
95 |
+
"nll_loss": 1.9949692487716675,
|
96 |
+
"rewards/accuracies": 0.54296875,
|
97 |
+
"rewards/chosen": -0.18894124031066895,
|
98 |
+
"rewards/margins": -0.001085837371647358,
|
99 |
+
"rewards/rejected": -0.18785539269447327,
|
100 |
+
"step": 128
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 3.0260047281323876,
|
104 |
+
"grad_norm": 3593.66064453125,
|
105 |
+
"learning_rate": 4.876353872369572e-07,
|
106 |
+
"log_odds_chosen": 0.010831637308001518,
|
107 |
+
"log_odds_ratio": -0.8205243349075317,
|
108 |
+
"logits/chosen": -2.4603629112243652,
|
109 |
+
"logits/rejected": -2.4731788635253906,
|
110 |
+
"logps/chosen": -1.9289910793304443,
|
111 |
+
"logps/rejected": -1.854127049446106,
|
112 |
+
"loss": 2.0756,
|
113 |
+
"nll_loss": 2.116929769515991,
|
114 |
+
"rewards/accuracies": 0.58203125,
|
115 |
+
"rewards/chosen": -0.19289910793304443,
|
116 |
+
"rewards/margins": -0.0074864043854177,
|
117 |
+
"rewards/rejected": -0.1854127049446106,
|
118 |
+
"step": 160
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 3.0260047281323876,
|
122 |
+
"eval_log_odds_chosen": 1.280719518661499,
|
123 |
+
"eval_log_odds_ratio": -0.25084003806114197,
|
124 |
+
"eval_logits/chosen": -2.156606912612915,
|
125 |
+
"eval_logits/rejected": -2.2219834327697754,
|
126 |
+
"eval_logps/chosen": -1.4854581356048584,
|
127 |
+
"eval_logps/rejected": -2.5444798469543457,
|
128 |
+
"eval_loss": 1.3283345699310303,
|
129 |
+
"eval_nll_loss": 1.4989588260650635,
|
130 |
+
"eval_rewards/accuracies": 1.0,
|
131 |
+
"eval_rewards/chosen": -0.14854581654071808,
|
132 |
+
"eval_rewards/margins": 0.10590219497680664,
|
133 |
+
"eval_rewards/rejected": -0.2544480264186859,
|
134 |
+
"eval_runtime": 0.8785,
|
135 |
+
"eval_samples_per_second": 155.943,
|
136 |
+
"eval_steps_per_second": 5.691,
|
137 |
+
"step": 160
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 3.631205673758865,
|
141 |
+
"grad_norm": 817.2037353515625,
|
142 |
+
"learning_rate": 4.752422169756047e-07,
|
143 |
+
"log_odds_chosen": 0.09074901789426804,
|
144 |
+
"log_odds_ratio": -0.7456185817718506,
|
145 |
+
"logits/chosen": -2.377356767654419,
|
146 |
+
"logits/rejected": -2.396003007888794,
|
147 |
+
"logps/chosen": -1.5171489715576172,
|
148 |
+
"logps/rejected": -1.5251379013061523,
|
149 |
+
"loss": 1.9051,
|
150 |
+
"nll_loss": 1.6593117713928223,
|
151 |
+
"rewards/accuracies": 0.609375,
|
152 |
+
"rewards/chosen": -0.15171489119529724,
|
153 |
+
"rewards/margins": 0.0007988963043317199,
|
154 |
+
"rewards/rejected": -0.152513787150383,
|
155 |
+
"step": 192
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 4.236406619385343,
|
159 |
+
"grad_norm": 954.6674194335938,
|
160 |
+
"learning_rate": 4.588719528532341e-07,
|
161 |
+
"log_odds_chosen": 0.1411646008491516,
|
162 |
+
"log_odds_ratio": -0.6900860667228699,
|
163 |
+
"logits/chosen": -2.398102283477783,
|
164 |
+
"logits/rejected": -2.397972345352173,
|
165 |
+
"logps/chosen": -1.2695732116699219,
|
166 |
+
"logps/rejected": -1.3286174535751343,
|
167 |
+
"loss": 1.4204,
|
168 |
+
"nll_loss": 1.3868590593338013,
|
169 |
+
"rewards/accuracies": 0.6171875,
|
170 |
+
"rewards/chosen": -0.12695731222629547,
|
171 |
+
"rewards/margins": 0.005904428660869598,
|
172 |
+
"rewards/rejected": -0.13286174833774567,
|
173 |
+
"step": 224
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 4.539007092198582,
|
177 |
+
"eval_log_odds_chosen": 1.1990762948989868,
|
178 |
+
"eval_log_odds_ratio": -0.2697806656360626,
|
179 |
+
"eval_logits/chosen": -2.137376546859741,
|
180 |
+
"eval_logits/rejected": -2.1972498893737793,
|
181 |
+
"eval_logps/chosen": -1.2540639638900757,
|
182 |
+
"eval_logps/rejected": -2.2160115242004395,
|
183 |
+
"eval_loss": 1.2844356298446655,
|
184 |
+
"eval_nll_loss": 1.4172712564468384,
|
185 |
+
"eval_rewards/accuracies": 1.0,
|
186 |
+
"eval_rewards/chosen": -0.125406414270401,
|
187 |
+
"eval_rewards/margins": 0.09619472920894623,
|
188 |
+
"eval_rewards/rejected": -0.22160112857818604,
|
189 |
+
"eval_runtime": 0.8664,
|
190 |
+
"eval_samples_per_second": 158.119,
|
191 |
+
"eval_steps_per_second": 5.771,
|
192 |
+
"step": 240
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 4.84160756501182,
|
196 |
+
"grad_norm": 790.6442260742188,
|
197 |
+
"learning_rate": 4.3881364404463375e-07,
|
198 |
+
"log_odds_chosen": 0.20751571655273438,
|
199 |
+
"log_odds_ratio": -0.6614270210266113,
|
200 |
+
"logits/chosen": -2.3498642444610596,
|
201 |
+
"logits/rejected": -2.370640993118286,
|
202 |
+
"logps/chosen": -1.1192173957824707,
|
203 |
+
"logps/rejected": -1.2252520322799683,
|
204 |
+
"loss": 1.3469,
|
205 |
+
"nll_loss": 1.2267839908599854,
|
206 |
+
"rewards/accuracies": 0.65625,
|
207 |
+
"rewards/chosen": -0.1119217574596405,
|
208 |
+
"rewards/margins": 0.010603459551930428,
|
209 |
+
"rewards/rejected": -0.12252521514892578,
|
210 |
+
"step": 256
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 5.446808510638298,
|
214 |
+
"grad_norm": 2515.4189453125,
|
215 |
+
"learning_rate": 4.154214593992149e-07,
|
216 |
+
"log_odds_chosen": 0.23377765715122223,
|
217 |
+
"log_odds_ratio": -0.6729075312614441,
|
218 |
+
"logits/chosen": -2.322608709335327,
|
219 |
+
"logits/rejected": -2.361389636993408,
|
220 |
+
"logps/chosen": -1.1726882457733154,
|
221 |
+
"logps/rejected": -1.2837783098220825,
|
222 |
+
"loss": 1.3539,
|
223 |
+
"nll_loss": 1.2735731601715088,
|
224 |
+
"rewards/accuracies": 0.6875,
|
225 |
+
"rewards/chosen": -0.11726883798837662,
|
226 |
+
"rewards/margins": 0.011109001003205776,
|
227 |
+
"rewards/rejected": -0.12837782502174377,
|
228 |
+
"step": 288
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 6.052009456264775,
|
232 |
+
"grad_norm": 2093.776611328125,
|
233 |
+
"learning_rate": 3.891084338941603e-07,
|
234 |
+
"log_odds_chosen": 0.16962425410747528,
|
235 |
+
"log_odds_ratio": -0.6696641445159912,
|
236 |
+
"logits/chosen": -2.325108051300049,
|
237 |
+
"logits/rejected": -2.3817710876464844,
|
238 |
+
"logps/chosen": -3.6265933513641357,
|
239 |
+
"logps/rejected": -3.700042724609375,
|
240 |
+
"loss": 3.6173,
|
241 |
+
"nll_loss": 3.7216219902038574,
|
242 |
+
"rewards/accuracies": 0.59765625,
|
243 |
+
"rewards/chosen": -0.3626593351364136,
|
244 |
+
"rewards/margins": 0.007344960235059261,
|
245 |
+
"rewards/rejected": -0.3700042963027954,
|
246 |
+
"step": 320
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 6.052009456264775,
|
250 |
+
"eval_log_odds_chosen": 1.1228582859039307,
|
251 |
+
"eval_log_odds_ratio": -0.2914997637271881,
|
252 |
+
"eval_logits/chosen": -2.153041362762451,
|
253 |
+
"eval_logits/rejected": -2.239081621170044,
|
254 |
+
"eval_logps/chosen": -1.1402614116668701,
|
255 |
+
"eval_logps/rejected": -2.0236728191375732,
|
256 |
+
"eval_loss": 1.2484513521194458,
|
257 |
+
"eval_nll_loss": 1.3337957859039307,
|
258 |
+
"eval_rewards/accuracies": 1.0,
|
259 |
+
"eval_rewards/chosen": -0.11402615159749985,
|
260 |
+
"eval_rewards/margins": 0.0883411318063736,
|
261 |
+
"eval_rewards/rejected": -0.20236727595329285,
|
262 |
+
"eval_runtime": 0.8835,
|
263 |
+
"eval_samples_per_second": 155.057,
|
264 |
+
"eval_steps_per_second": 5.659,
|
265 |
+
"step": 320
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 6.657210401891253,
|
269 |
+
"grad_norm": 750.7427978515625,
|
270 |
+
"learning_rate": 3.6033917569043597e-07,
|
271 |
+
"log_odds_chosen": 0.2158849686384201,
|
272 |
+
"log_odds_ratio": -0.651162326335907,
|
273 |
+
"logits/chosen": -2.2999160289764404,
|
274 |
+
"logits/rejected": -2.3155159950256348,
|
275 |
+
"logps/chosen": -3.3152918815612793,
|
276 |
+
"logps/rejected": -3.4116926193237305,
|
277 |
+
"loss": 3.4506,
|
278 |
+
"nll_loss": 3.4377260208129883,
|
279 |
+
"rewards/accuracies": 0.6015625,
|
280 |
+
"rewards/chosen": -0.3315292000770569,
|
281 |
+
"rewards/margins": 0.00964003149420023,
|
282 |
+
"rewards/rejected": -0.34116923809051514,
|
283 |
+
"step": 352
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 7.26241134751773,
|
287 |
+
"grad_norm": 466.0474548339844,
|
288 |
+
"learning_rate": 3.296216625629211e-07,
|
289 |
+
"log_odds_chosen": 0.2518257200717926,
|
290 |
+
"log_odds_ratio": -0.6292858123779297,
|
291 |
+
"logits/chosen": -2.287289619445801,
|
292 |
+
"logits/rejected": -2.274383783340454,
|
293 |
+
"logps/chosen": -2.936006784439087,
|
294 |
+
"logps/rejected": -3.0706114768981934,
|
295 |
+
"loss": 3.1836,
|
296 |
+
"nll_loss": 3.031456708908081,
|
297 |
+
"rewards/accuracies": 0.66796875,
|
298 |
+
"rewards/chosen": -0.2936007082462311,
|
299 |
+
"rewards/margins": 0.013460462912917137,
|
300 |
+
"rewards/rejected": -0.30706116557121277,
|
301 |
+
"step": 384
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 7.5650118203309695,
|
305 |
+
"eval_log_odds_chosen": 1.1787246465682983,
|
306 |
+
"eval_log_odds_ratio": -0.27878421545028687,
|
307 |
+
"eval_logits/chosen": -2.131922721862793,
|
308 |
+
"eval_logits/rejected": -2.198315143585205,
|
309 |
+
"eval_logps/chosen": -1.1629152297973633,
|
310 |
+
"eval_logps/rejected": -2.102142810821533,
|
311 |
+
"eval_loss": 1.2289972305297852,
|
312 |
+
"eval_nll_loss": 1.3089702129364014,
|
313 |
+
"eval_rewards/accuracies": 1.0,
|
314 |
+
"eval_rewards/chosen": -0.11629153788089752,
|
315 |
+
"eval_rewards/margins": 0.09392273426055908,
|
316 |
+
"eval_rewards/rejected": -0.2102142572402954,
|
317 |
+
"eval_runtime": 0.8657,
|
318 |
+
"eval_samples_per_second": 158.25,
|
319 |
+
"eval_steps_per_second": 5.776,
|
320 |
+
"step": 400
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 7.867612293144208,
|
324 |
+
"grad_norm": 493.2022399902344,
|
325 |
+
"learning_rate": 2.974982725547975e-07,
|
326 |
+
"log_odds_chosen": 0.29160410165786743,
|
327 |
+
"log_odds_ratio": -0.6114708781242371,
|
328 |
+
"logits/chosen": -2.296574115753174,
|
329 |
+
"logits/rejected": -2.3063693046569824,
|
330 |
+
"logps/chosen": -2.907156229019165,
|
331 |
+
"logps/rejected": -3.049989938735962,
|
332 |
+
"loss": 3.0885,
|
333 |
+
"nll_loss": 2.9950599670410156,
|
334 |
+
"rewards/accuracies": 0.6953125,
|
335 |
+
"rewards/chosen": -0.29071560502052307,
|
336 |
+
"rewards/margins": 0.014283367432653904,
|
337 |
+
"rewards/rejected": -0.3049989938735962,
|
338 |
+
"step": 416
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 8.472813238770685,
|
342 |
+
"grad_norm": 2084.139892578125,
|
343 |
+
"learning_rate": 2.6453620722761895e-07,
|
344 |
+
"log_odds_chosen": 0.2739107012748718,
|
345 |
+
"log_odds_ratio": -0.6295269727706909,
|
346 |
+
"logits/chosen": -2.3001277446746826,
|
347 |
+
"logits/rejected": -2.2884907722473145,
|
348 |
+
"logps/chosen": -2.9699883460998535,
|
349 |
+
"logps/rejected": -3.114020586013794,
|
350 |
+
"loss": 2.9983,
|
351 |
+
"nll_loss": 3.031224012374878,
|
352 |
+
"rewards/accuracies": 0.65234375,
|
353 |
+
"rewards/chosen": -0.29699885845184326,
|
354 |
+
"rewards/margins": 0.014403235167264938,
|
355 |
+
"rewards/rejected": -0.3114020824432373,
|
356 |
+
"step": 448
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 9.078014184397164,
|
360 |
+
"grad_norm": 557.6774291992188,
|
361 |
+
"learning_rate": 2.3131747660339394e-07,
|
362 |
+
"log_odds_chosen": 0.2703976333141327,
|
363 |
+
"log_odds_ratio": -0.6236827969551086,
|
364 |
+
"logits/chosen": -2.2672348022460938,
|
365 |
+
"logits/rejected": -2.2586584091186523,
|
366 |
+
"logps/chosen": -2.937666893005371,
|
367 |
+
"logps/rejected": -3.061203718185425,
|
368 |
+
"loss": 2.8082,
|
369 |
+
"nll_loss": 3.023472785949707,
|
370 |
+
"rewards/accuracies": 0.66015625,
|
371 |
+
"rewards/chosen": -0.29376670718193054,
|
372 |
+
"rewards/margins": 0.012353670783340931,
|
373 |
+
"rewards/rejected": -0.306120365858078,
|
374 |
+
"step": 480
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 9.078014184397164,
|
378 |
+
"eval_log_odds_chosen": 1.1980304718017578,
|
379 |
+
"eval_log_odds_ratio": -0.27382025122642517,
|
380 |
+
"eval_logits/chosen": -2.1204967498779297,
|
381 |
+
"eval_logits/rejected": -2.1800942420959473,
|
382 |
+
"eval_logps/chosen": -1.192492961883545,
|
383 |
+
"eval_logps/rejected": -2.1554245948791504,
|
384 |
+
"eval_loss": 1.2367494106292725,
|
385 |
+
"eval_nll_loss": 1.3177238702774048,
|
386 |
+
"eval_rewards/accuracies": 1.0,
|
387 |
+
"eval_rewards/chosen": -0.11924929916858673,
|
388 |
+
"eval_rewards/margins": 0.09629315137863159,
|
389 |
+
"eval_rewards/rejected": -0.21554246544837952,
|
390 |
+
"eval_runtime": 0.88,
|
391 |
+
"eval_samples_per_second": 155.689,
|
392 |
+
"eval_steps_per_second": 5.682,
|
393 |
+
"step": 480
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 9.68321513002364,
|
397 |
+
"grad_norm": 8620.671875,
|
398 |
+
"learning_rate": 1.984286226342056e-07,
|
399 |
+
"log_odds_chosen": 0.36868974566459656,
|
400 |
+
"log_odds_ratio": -0.6002693176269531,
|
401 |
+
"logits/chosen": -2.237966537475586,
|
402 |
+
"logits/rejected": -2.2450058460235596,
|
403 |
+
"logps/chosen": -2.536555290222168,
|
404 |
+
"logps/rejected": -2.738464117050171,
|
405 |
+
"loss": 2.7562,
|
406 |
+
"nll_loss": 2.642591714859009,
|
407 |
+
"rewards/accuracies": 0.69921875,
|
408 |
+
"rewards/chosen": -0.2536555230617523,
|
409 |
+
"rewards/margins": 0.020190902054309845,
|
410 |
+
"rewards/rejected": -0.27384641766548157,
|
411 |
+
"step": 512
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 10.288416075650119,
|
415 |
+
"grad_norm": 8913.7607421875,
|
416 |
+
"learning_rate": 1.6645036265170313e-07,
|
417 |
+
"log_odds_chosen": 0.23036888241767883,
|
418 |
+
"log_odds_ratio": -0.6965319514274597,
|
419 |
+
"logits/chosen": -2.346311092376709,
|
420 |
+
"logits/rejected": -2.3196349143981934,
|
421 |
+
"logps/chosen": -2.625997543334961,
|
422 |
+
"logps/rejected": -2.695284605026245,
|
423 |
+
"loss": 2.9109,
|
424 |
+
"nll_loss": 2.6460041999816895,
|
425 |
+
"rewards/accuracies": 0.68359375,
|
426 |
+
"rewards/chosen": -0.26259979605674744,
|
427 |
+
"rewards/margins": 0.006928655784577131,
|
428 |
+
"rewards/rejected": -0.26952844858169556,
|
429 |
+
"step": 544
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 10.591016548463356,
|
433 |
+
"eval_log_odds_chosen": 1.2137528657913208,
|
434 |
+
"eval_log_odds_ratio": -0.2704525589942932,
|
435 |
+
"eval_logits/chosen": -2.1178054809570312,
|
436 |
+
"eval_logits/rejected": -2.1774165630340576,
|
437 |
+
"eval_logps/chosen": -1.1941485404968262,
|
438 |
+
"eval_logps/rejected": -2.171353340148926,
|
439 |
+
"eval_loss": 1.237461805343628,
|
440 |
+
"eval_nll_loss": 1.3179538249969482,
|
441 |
+
"eval_rewards/accuracies": 1.0,
|
442 |
+
"eval_rewards/chosen": -0.11941485106945038,
|
443 |
+
"eval_rewards/margins": 0.09772048145532608,
|
444 |
+
"eval_rewards/rejected": -0.21713533997535706,
|
445 |
+
"eval_runtime": 0.8664,
|
446 |
+
"eval_samples_per_second": 158.121,
|
447 |
+
"eval_steps_per_second": 5.771,
|
448 |
+
"step": 560
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 10.893617021276595,
|
452 |
+
"grad_norm": 11410.7939453125,
|
453 |
+
"learning_rate": 1.3594733566170925e-07,
|
454 |
+
"log_odds_chosen": 0.2925941050052643,
|
455 |
+
"log_odds_ratio": -0.6866809725761414,
|
456 |
+
"logits/chosen": -2.3280415534973145,
|
457 |
+
"logits/rejected": -2.308394432067871,
|
458 |
+
"logps/chosen": -3.2026498317718506,
|
459 |
+
"logps/rejected": -3.3342018127441406,
|
460 |
+
"loss": 2.9544,
|
461 |
+
"nll_loss": 3.251168966293335,
|
462 |
+
"rewards/accuracies": 0.66796875,
|
463 |
+
"rewards/chosen": -0.320264995098114,
|
464 |
+
"rewards/margins": 0.013155205175280571,
|
465 |
+
"rewards/rejected": -0.33342018723487854,
|
466 |
+
"step": 576
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 11.498817966903074,
|
470 |
+
"grad_norm": 2123.895751953125,
|
471 |
+
"learning_rate": 1.0745813253325956e-07,
|
472 |
+
"log_odds_chosen": 0.3092188239097595,
|
473 |
+
"log_odds_ratio": -0.6492509245872498,
|
474 |
+
"logits/chosen": -2.3580808639526367,
|
475 |
+
"logits/rejected": -2.349421501159668,
|
476 |
+
"logps/chosen": -2.5302317142486572,
|
477 |
+
"logps/rejected": -2.662865161895752,
|
478 |
+
"loss": 2.8523,
|
479 |
+
"nll_loss": 2.578503131866455,
|
480 |
+
"rewards/accuracies": 0.6953125,
|
481 |
+
"rewards/chosen": -0.2530231475830078,
|
482 |
+
"rewards/margins": 0.013263333588838577,
|
483 |
+
"rewards/rejected": -0.2662864923477173,
|
484 |
+
"step": 608
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 12.10401891252955,
|
488 |
+
"grad_norm": 1731.5615234375,
|
489 |
+
"learning_rate": 8.148578611867113e-08,
|
490 |
+
"log_odds_chosen": 0.3393189013004303,
|
491 |
+
"log_odds_ratio": -0.6164168119430542,
|
492 |
+
"logits/chosen": -2.1805524826049805,
|
493 |
+
"logits/rejected": -2.177432060241699,
|
494 |
+
"logps/chosen": -2.5276594161987305,
|
495 |
+
"logps/rejected": -2.710268497467041,
|
496 |
+
"loss": 2.5512,
|
497 |
+
"nll_loss": 2.681882381439209,
|
498 |
+
"rewards/accuracies": 0.67578125,
|
499 |
+
"rewards/chosen": -0.252765953540802,
|
500 |
+
"rewards/margins": 0.01826086826622486,
|
501 |
+
"rewards/rejected": -0.2710268199443817,
|
502 |
+
"step": 640
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 12.10401891252955,
|
506 |
+
"eval_log_odds_chosen": 1.2131071090698242,
|
507 |
+
"eval_log_odds_ratio": -0.270443856716156,
|
508 |
+
"eval_logits/chosen": -2.1185622215270996,
|
509 |
+
"eval_logits/rejected": -2.178537368774414,
|
510 |
+
"eval_logps/chosen": -1.198697566986084,
|
511 |
+
"eval_logps/rejected": -2.176114559173584,
|
512 |
+
"eval_loss": 1.2388056516647339,
|
513 |
+
"eval_nll_loss": 1.3213987350463867,
|
514 |
+
"eval_rewards/accuracies": 1.0,
|
515 |
+
"eval_rewards/chosen": -0.11986975371837616,
|
516 |
+
"eval_rewards/margins": 0.09774170815944672,
|
517 |
+
"eval_rewards/rejected": -0.21761147677898407,
|
518 |
+
"eval_runtime": 0.8825,
|
519 |
+
"eval_samples_per_second": 155.235,
|
520 |
+
"eval_steps_per_second": 5.666,
|
521 |
+
"step": 640
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 12.709219858156029,
|
525 |
+
"grad_norm": 1997.690185546875,
|
526 |
+
"learning_rate": 5.848888922025552e-08,
|
527 |
+
"log_odds_chosen": 0.3624497354030609,
|
528 |
+
"log_odds_ratio": -0.6123137474060059,
|
529 |
+
"logits/chosen": -2.179229259490967,
|
530 |
+
"logits/rejected": -2.1755523681640625,
|
531 |
+
"logps/chosen": -2.486222743988037,
|
532 |
+
"logps/rejected": -2.6808714866638184,
|
533 |
+
"loss": 2.5628,
|
534 |
+
"nll_loss": 2.6199562549591064,
|
535 |
+
"rewards/accuracies": 0.69140625,
|
536 |
+
"rewards/chosen": -0.24862225353717804,
|
537 |
+
"rewards/margins": 0.019464917480945587,
|
538 |
+
"rewards/rejected": -0.2680871784687042,
|
539 |
+
"step": 672
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 13.314420803782506,
|
543 |
+
"grad_norm": 2036.525146484375,
|
544 |
+
"learning_rate": 3.887349723342303e-08,
|
545 |
+
"log_odds_chosen": 0.3463588356971741,
|
546 |
+
"log_odds_ratio": -0.6327537298202515,
|
547 |
+
"logits/chosen": -2.181072235107422,
|
548 |
+
"logits/rejected": -2.1947262287139893,
|
549 |
+
"logps/chosen": -2.517810344696045,
|
550 |
+
"logps/rejected": -2.672647476196289,
|
551 |
+
"loss": 2.6212,
|
552 |
+
"nll_loss": 2.6852023601531982,
|
553 |
+
"rewards/accuracies": 0.68359375,
|
554 |
+
"rewards/chosen": -0.25178101658821106,
|
555 |
+
"rewards/margins": 0.01548372209072113,
|
556 |
+
"rewards/rejected": -0.2672647535800934,
|
557 |
+
"step": 704
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 13.617021276595745,
|
561 |
+
"eval_log_odds_chosen": 1.2199119329452515,
|
562 |
+
"eval_log_odds_ratio": -0.26896363496780396,
|
563 |
+
"eval_logits/chosen": -2.1166138648986816,
|
564 |
+
"eval_logits/rejected": -2.1762003898620605,
|
565 |
+
"eval_logps/chosen": -1.1962625980377197,
|
566 |
+
"eval_logps/rejected": -2.1790993213653564,
|
567 |
+
"eval_loss": 1.2387369871139526,
|
568 |
+
"eval_nll_loss": 1.3203083276748657,
|
569 |
+
"eval_rewards/accuracies": 1.0,
|
570 |
+
"eval_rewards/chosen": -0.11962626129388809,
|
571 |
+
"eval_rewards/margins": 0.09828367829322815,
|
572 |
+
"eval_rewards/rejected": -0.21790993213653564,
|
573 |
+
"eval_runtime": 0.8708,
|
574 |
+
"eval_samples_per_second": 157.334,
|
575 |
+
"eval_steps_per_second": 5.742,
|
576 |
+
"step": 720
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 13.919621749408984,
|
580 |
+
"grad_norm": 9910.3740234375,
|
581 |
+
"learning_rate": 2.298595844092377e-08,
|
582 |
+
"log_odds_chosen": 0.3617098927497864,
|
583 |
+
"log_odds_ratio": -0.6060731410980225,
|
584 |
+
"logits/chosen": -2.2685229778289795,
|
585 |
+
"logits/rejected": -2.2752606868743896,
|
586 |
+
"logps/chosen": -1.9047422409057617,
|
587 |
+
"logps/rejected": -2.0876576900482178,
|
588 |
+
"loss": 2.4957,
|
589 |
+
"nll_loss": 1.975754737854004,
|
590 |
+
"rewards/accuracies": 0.71484375,
|
591 |
+
"rewards/chosen": -0.19047421216964722,
|
592 |
+
"rewards/margins": 0.01829155907034874,
|
593 |
+
"rewards/rejected": -0.20876577496528625,
|
594 |
+
"step": 736
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 14.52482269503546,
|
598 |
+
"grad_norm": 1543.000244140625,
|
599 |
+
"learning_rate": 1.1106798553464802e-08,
|
600 |
+
"log_odds_chosen": 0.42522603273391724,
|
601 |
+
"log_odds_ratio": -0.5653746128082275,
|
602 |
+
"logits/chosen": -2.353919744491577,
|
603 |
+
"logits/rejected": -2.358372688293457,
|
604 |
+
"logps/chosen": -1.2913402318954468,
|
605 |
+
"logps/rejected": -1.542799711227417,
|
606 |
+
"loss": 1.4582,
|
607 |
+
"nll_loss": 1.3932266235351562,
|
608 |
+
"rewards/accuracies": 0.765625,
|
609 |
+
"rewards/chosen": -0.12913402915000916,
|
610 |
+
"rewards/margins": 0.025145962834358215,
|
611 |
+
"rewards/rejected": -0.15427997708320618,
|
612 |
+
"step": 768
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 15.130023640661939,
|
616 |
+
"grad_norm": 698.0999755859375,
|
617 |
+
"learning_rate": 3.4457674771554422e-09,
|
618 |
+
"log_odds_chosen": 0.4467349052429199,
|
619 |
+
"log_odds_ratio": -0.545281171798706,
|
620 |
+
"logits/chosen": -2.313391923904419,
|
621 |
+
"logits/rejected": -2.3118624687194824,
|
622 |
+
"logps/chosen": -1.2114390134811401,
|
623 |
+
"logps/rejected": -1.4863505363464355,
|
624 |
+
"loss": 1.3504,
|
625 |
+
"nll_loss": 1.3252184391021729,
|
626 |
+
"rewards/accuracies": 0.75,
|
627 |
+
"rewards/chosen": -0.1211438924074173,
|
628 |
+
"rewards/margins": 0.027491170912981033,
|
629 |
+
"rewards/rejected": -0.14863505959510803,
|
630 |
+
"step": 800
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 15.130023640661939,
|
634 |
+
"eval_log_odds_chosen": 1.211981177330017,
|
635 |
+
"eval_log_odds_ratio": -0.27068275213241577,
|
636 |
+
"eval_logits/chosen": -2.118680715560913,
|
637 |
+
"eval_logits/rejected": -2.1784884929656982,
|
638 |
+
"eval_logps/chosen": -1.1996212005615234,
|
639 |
+
"eval_logps/rejected": -2.176278829574585,
|
640 |
+
"eval_loss": 1.2384228706359863,
|
641 |
+
"eval_nll_loss": 1.3189568519592285,
|
642 |
+
"eval_rewards/accuracies": 1.0,
|
643 |
+
"eval_rewards/chosen": -0.11996213346719742,
|
644 |
+
"eval_rewards/margins": 0.09766574203968048,
|
645 |
+
"eval_rewards/rejected": -0.2176278829574585,
|
646 |
+
"eval_runtime": 0.8764,
|
647 |
+
"eval_samples_per_second": 156.329,
|
648 |
+
"eval_steps_per_second": 5.705,
|
649 |
+
"step": 800
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 15.735224586288416,
|
653 |
+
"grad_norm": 295.0424499511719,
|
654 |
+
"learning_rate": 1.3813576683111006e-10,
|
655 |
+
"log_odds_chosen": 0.44846177101135254,
|
656 |
+
"log_odds_ratio": -0.5449205636978149,
|
657 |
+
"logits/chosen": -2.3085861206054688,
|
658 |
+
"logits/rejected": -2.3130688667297363,
|
659 |
+
"logps/chosen": -1.1487438678741455,
|
660 |
+
"logps/rejected": -1.4232044219970703,
|
661 |
+
"loss": 1.3316,
|
662 |
+
"nll_loss": 1.246992588043213,
|
663 |
+
"rewards/accuracies": 0.74609375,
|
664 |
+
"rewards/chosen": -0.11487438529729843,
|
665 |
+
"rewards/margins": 0.027446046471595764,
|
666 |
+
"rewards/rejected": -0.142320454120636,
|
667 |
+
"step": 832
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 15.886524822695035,
|
671 |
+
"grad_norm": 305.3218078613281,
|
672 |
+
"learning_rate": 0.0,
|
673 |
+
"log_odds_chosen": 0.500209391117096,
|
674 |
+
"log_odds_ratio": -0.5302451848983765,
|
675 |
+
"logits/chosen": -2.2818732261657715,
|
676 |
+
"logits/rejected": -2.2850182056427,
|
677 |
+
"logps/chosen": -1.1465669870376587,
|
678 |
+
"logps/rejected": -1.4646430015563965,
|
679 |
+
"loss": 1.3265,
|
680 |
+
"nll_loss": 1.2768977880477905,
|
681 |
+
"rewards/accuracies": 0.75,
|
682 |
+
"rewards/chosen": -0.11465670168399811,
|
683 |
+
"rewards/margins": 0.03180759772658348,
|
684 |
+
"rewards/rejected": -0.1464642882347107,
|
685 |
+
"step": 840
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 15.886524822695035,
|
689 |
+
"eval_log_odds_chosen": 1.2168288230895996,
|
690 |
+
"eval_log_odds_ratio": -0.26950639486312866,
|
691 |
+
"eval_logits/chosen": -2.1189827919006348,
|
692 |
+
"eval_logits/rejected": -2.1787045001983643,
|
693 |
+
"eval_logps/chosen": -1.1971455812454224,
|
694 |
+
"eval_logps/rejected": -2.1773040294647217,
|
695 |
+
"eval_loss": 1.2378294467926025,
|
696 |
+
"eval_nll_loss": 1.3174165487289429,
|
697 |
+
"eval_rewards/accuracies": 1.0,
|
698 |
+
"eval_rewards/chosen": -0.11971455812454224,
|
699 |
+
"eval_rewards/margins": 0.09801585972309113,
|
700 |
+
"eval_rewards/rejected": -0.21773043274879456,
|
701 |
+
"eval_runtime": 0.8739,
|
702 |
+
"eval_samples_per_second": 156.768,
|
703 |
+
"eval_steps_per_second": 5.721,
|
704 |
+
"step": 840
|
705 |
+
}
|
706 |
+
],
|
707 |
+
"logging_steps": 32,
|
708 |
+
"max_steps": 840,
|
709 |
+
"num_input_tokens_seen": 0,
|
710 |
+
"num_train_epochs": 17,
|
711 |
+
"save_steps": 80,
|
712 |
+
"total_flos": 0.0,
|
713 |
+
"train_batch_size": 1,
|
714 |
+
"trial_name": null,
|
715 |
+
"trial_params": null
|
716 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9cf4bad153a8a42ca1b3fea065697abe1e976b7710797d509935abc59411d2b
|
3 |
+
size 6968
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|