--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-small-Label_B-1024-epochs-2 results: [] --- # deberta-v3-small-Label_B-1024-epochs-2 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0726 - Accuracy: 0.9829 - F1: 0.9829 - Precision: 0.9830 - Recall: 0.9829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0424 | 0.9996 | 2132 | 0.0915 | 0.9780 | 0.9780 | 0.9787 | 0.9780 | | 0.0011 | 1.9993 | 4264 | 0.0726 | 0.9829 | 0.9829 | 0.9830 | 0.9829 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.5.0+cu124 - Datasets 2.18.0 - Tokenizers 0.19.1