avsolatorio/doc-topic-model_eval-04_train-01
Browse files- README.md +88 -0
- model.safetensors +1 -1
README.md
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
base_model: microsoft/deberta-v3-small
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
- f1
|
| 10 |
+
- precision
|
| 11 |
+
- recall
|
| 12 |
+
model-index:
|
| 13 |
+
- name: doc-topic-model_eval-04_train-01
|
| 14 |
+
results: []
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 18 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 19 |
+
|
| 20 |
+
# doc-topic-model_eval-04_train-01
|
| 21 |
+
|
| 22 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
|
| 23 |
+
It achieves the following results on the evaluation set:
|
| 24 |
+
- Loss: 0.0396
|
| 25 |
+
- Accuracy: 0.9879
|
| 26 |
+
- F1: 0.6415
|
| 27 |
+
- Precision: 0.7120
|
| 28 |
+
- Recall: 0.5837
|
| 29 |
+
|
| 30 |
+
## Model description
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Intended uses & limitations
|
| 35 |
+
|
| 36 |
+
More information needed
|
| 37 |
+
|
| 38 |
+
## Training and evaluation data
|
| 39 |
+
|
| 40 |
+
More information needed
|
| 41 |
+
|
| 42 |
+
## Training procedure
|
| 43 |
+
|
| 44 |
+
### Training hyperparameters
|
| 45 |
+
|
| 46 |
+
The following hyperparameters were used during training:
|
| 47 |
+
- learning_rate: 2e-05
|
| 48 |
+
- train_batch_size: 4
|
| 49 |
+
- eval_batch_size: 256
|
| 50 |
+
- seed: 42
|
| 51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 52 |
+
- lr_scheduler_type: linear
|
| 53 |
+
- num_epochs: 100
|
| 54 |
+
- mixed_precision_training: Native AMP
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 59 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 60 |
+
| 0.0941 | 0.4931 | 1000 | 0.0902 | 0.9815 | 0.0 | 0.0 | 0.0 |
|
| 61 |
+
| 0.0787 | 0.9862 | 2000 | 0.0703 | 0.9815 | 0.0 | 0.0 | 0.0 |
|
| 62 |
+
| 0.0628 | 1.4793 | 3000 | 0.0572 | 0.9823 | 0.1235 | 0.7562 | 0.0672 |
|
| 63 |
+
| 0.0537 | 1.9724 | 4000 | 0.0500 | 0.9843 | 0.3220 | 0.7927 | 0.2021 |
|
| 64 |
+
| 0.0478 | 2.4655 | 5000 | 0.0466 | 0.9853 | 0.4339 | 0.7566 | 0.3042 |
|
| 65 |
+
| 0.0453 | 2.9586 | 6000 | 0.0441 | 0.9859 | 0.5020 | 0.7244 | 0.3841 |
|
| 66 |
+
| 0.0389 | 3.4517 | 7000 | 0.0414 | 0.9865 | 0.5425 | 0.7258 | 0.4332 |
|
| 67 |
+
| 0.0393 | 3.9448 | 8000 | 0.0406 | 0.9863 | 0.5470 | 0.7070 | 0.4461 |
|
| 68 |
+
| 0.0349 | 4.4379 | 9000 | 0.0392 | 0.9870 | 0.5759 | 0.7229 | 0.4786 |
|
| 69 |
+
| 0.0344 | 4.9310 | 10000 | 0.0386 | 0.9872 | 0.5807 | 0.7357 | 0.4796 |
|
| 70 |
+
| 0.0302 | 5.4241 | 11000 | 0.0381 | 0.9873 | 0.5950 | 0.7282 | 0.5030 |
|
| 71 |
+
| 0.0305 | 5.9172 | 12000 | 0.0381 | 0.9872 | 0.5975 | 0.7153 | 0.5129 |
|
| 72 |
+
| 0.027 | 6.4103 | 13000 | 0.0378 | 0.9875 | 0.6030 | 0.7290 | 0.5141 |
|
| 73 |
+
| 0.0282 | 6.9034 | 14000 | 0.0374 | 0.9876 | 0.6094 | 0.7303 | 0.5229 |
|
| 74 |
+
| 0.0235 | 7.3964 | 15000 | 0.0378 | 0.9876 | 0.6213 | 0.7128 | 0.5507 |
|
| 75 |
+
| 0.0255 | 7.8895 | 16000 | 0.0372 | 0.9878 | 0.6303 | 0.7188 | 0.5613 |
|
| 76 |
+
| 0.0214 | 8.3826 | 17000 | 0.0378 | 0.9878 | 0.6356 | 0.7125 | 0.5737 |
|
| 77 |
+
| 0.0222 | 8.8757 | 18000 | 0.0381 | 0.9878 | 0.6313 | 0.7141 | 0.5658 |
|
| 78 |
+
| 0.0192 | 9.3688 | 19000 | 0.0390 | 0.9875 | 0.6285 | 0.6951 | 0.5736 |
|
| 79 |
+
| 0.0189 | 9.8619 | 20000 | 0.0391 | 0.9878 | 0.6365 | 0.7085 | 0.5778 |
|
| 80 |
+
| 0.0159 | 10.3550 | 21000 | 0.0396 | 0.9879 | 0.6415 | 0.7120 | 0.5837 |
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
### Framework versions
|
| 84 |
+
|
| 85 |
+
- Transformers 4.44.2
|
| 86 |
+
- Pytorch 2.4.1+cu121
|
| 87 |
+
- Datasets 2.21.0
|
| 88 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 567860028
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75f25d8ad92f875a53659d2aa604eab54bc9083bbbead781aa5da3c192cfdc81
|
| 3 |
size 567860028
|