File size: 3,755 Bytes
dffca60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""

Convergence regions of the expansions used in ``struve.c``



Note that for v >> z both functions tend rapidly to 0,

and for v << -z, they tend to infinity.



The floating-point functions over/underflow in the lower left and right

corners of the figure.





Figure legend

=============



Red region

    Power series is close (1e-12) to the mpmath result



Blue region

    Asymptotic series is close to the mpmath result



Green region

    Bessel series is close to the mpmath result



Dotted colored lines

    Boundaries of the regions



Solid colored lines

    Boundaries estimated by the routine itself. These will be used

    for determining which of the results to use.



Black dashed line

    The line z = 0.7*|v| + 12



"""
import numpy as np
import matplotlib.pyplot as plt

import mpmath


def err_metric(a, b, atol=1e-290):
    m = abs(a - b) / (atol + abs(b))
    m[np.isinf(b) & (a == b)] = 0
    return m


def do_plot(is_h=True):
    from scipy.special._ufuncs import (_struve_power_series,
                                       _struve_asymp_large_z,
                                       _struve_bessel_series)

    vs = np.linspace(-1000, 1000, 91)
    zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]])

    rp = _struve_power_series(vs[:,None], zs[None,:], is_h)
    ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h)
    rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h)

    mpmath.mp.dps = 50
    if is_h:
        def sh(v, z):
            return float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z)))
    else:
        def sh(v, z):
            return float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z)))
    ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:])

    err_a = err_metric(ra[0], ex) + 1e-300
    err_p = err_metric(rp[0], ex) + 1e-300
    err_b = err_metric(rb[0], ex) + 1e-300

    err_est_a = abs(ra[1]/ra[0])
    err_est_p = abs(rp[1]/rp[0])
    err_est_b = abs(rb[1]/rb[0])

    z_cutoff = 0.7*abs(vs) + 12

    levels = [-1000, -12]

    plt.cla()

    plt.hold(1)
    plt.contourf(vs, zs, np.log10(err_p).T,
                 levels=levels, colors=['r', 'r'], alpha=0.1)
    plt.contourf(vs, zs, np.log10(err_a).T,
                 levels=levels, colors=['b', 'b'], alpha=0.1)
    plt.contourf(vs, zs, np.log10(err_b).T,
                 levels=levels, colors=['g', 'g'], alpha=0.1)

    plt.contour(vs, zs, np.log10(err_p).T,
                levels=levels, colors=['r', 'r'], linestyles=[':', ':'])
    plt.contour(vs, zs, np.log10(err_a).T,
                levels=levels, colors=['b', 'b'], linestyles=[':', ':'])
    plt.contour(vs, zs, np.log10(err_b).T,
                levels=levels, colors=['g', 'g'], linestyles=[':', ':'])

    lp = plt.contour(vs, zs, np.log10(err_est_p).T,
                     levels=levels, colors=['r', 'r'], linestyles=['-', '-'])
    la = plt.contour(vs, zs, np.log10(err_est_a).T,
                     levels=levels, colors=['b', 'b'], linestyles=['-', '-'])
    lb = plt.contour(vs, zs, np.log10(err_est_b).T,
                     levels=levels, colors=['g', 'g'], linestyles=['-', '-'])

    plt.clabel(lp, fmt={-1000: 'P', -12: 'P'})
    plt.clabel(la, fmt={-1000: 'A', -12: 'A'})
    plt.clabel(lb, fmt={-1000: 'B', -12: 'B'})

    plt.plot(vs, z_cutoff, 'k--')

    plt.xlim(vs.min(), vs.max())
    plt.ylim(zs.min(), zs.max())

    plt.xlabel('v')
    plt.ylabel('z')


def main():
    plt.clf()
    plt.subplot(121)
    do_plot(True)
    plt.title('Struve H')

    plt.subplot(122)
    do_plot(False)
    plt.title('Struve L')

    plt.savefig('struve_convergence.png')
    plt.show()


if __name__ == "__main__":
    main()