File size: 13,210 Bytes
dffca60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""Precompute coefficients of several series expansions

of Wright's generalized Bessel function Phi(a, b, x).



See https://dlmf.nist.gov/10.46.E1 with rho=a, beta=b, z=x.

"""
from argparse import ArgumentParser, RawTextHelpFormatter
import numpy as np
from scipy.integrate import quad
from scipy.optimize import minimize_scalar, curve_fit
from time import time

try:
    import sympy
    from sympy import EulerGamma, Rational, S, Sum, \
        factorial, gamma, gammasimp, pi, polygamma, symbols, zeta
    from sympy.polys.polyfuncs import horner
except ImportError:
    pass


def series_small_a():
    """Tylor series expansion of Phi(a, b, x) in a=0 up to order 5.

    """
    order = 5
    a, b, x, k = symbols("a b x k")
    A = []  # terms with a
    X = []  # terms with x
    B = []  # terms with b (polygammas)
    # Phi(a, b, x) = exp(x)/gamma(b) * sum(A[i] * X[i] * B[i])
    expression = Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity))
    expression = gamma(b)/sympy.exp(x) * expression

    # nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0)
    for n in range(0, order+1):
        term = expression.diff(a, n).subs(a, 0).simplify().doit()
        # set the whole bracket involving polygammas to 1
        x_part = (term.subs(polygamma(0, b), 1)
                  .replace(polygamma, lambda *args: 0))
        # sign convention: x part always positive
        x_part *= (-1)**n

        A.append(a**n/factorial(n))
        X.append(horner(x_part))
        B.append(horner((term/x_part).simplify()))

    s = "Tylor series expansion of Phi(a, b, x) in a=0 up to order 5.\n"
    s += "Phi(a, b, x) = exp(x)/gamma(b) * sum(A[i] * X[i] * B[i], i=0..5)\n"
    for name, c in zip(['A', 'X', 'B'], [A, X, B]):
        for i in range(len(c)):
            s += f"\n{name}[{i}] = " + str(c[i])
    return s


# expansion of digamma
def dg_series(z, n):
    """Symbolic expansion of digamma(z) in z=0 to order n.



    See https://dlmf.nist.gov/5.7.E4 and with https://dlmf.nist.gov/5.5.E2

    """
    k = symbols("k")
    return -1/z - EulerGamma + \
        sympy.summation((-1)**k * zeta(k) * z**(k-1), (k, 2, n+1))


def pg_series(k, z, n):
    """Symbolic expansion of polygamma(k, z) in z=0 to order n."""
    return sympy.diff(dg_series(z, n+k), z, k)


def series_small_a_small_b():
    """Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5.



    Be aware of cancellation of poles in b=0 of digamma(b)/Gamma(b) and

    polygamma functions.



    digamma(b)/Gamma(b) = -1 - 2*M_EG*b + O(b^2)

    digamma(b)^2/Gamma(b) = 1/b + 3*M_EG + b*(-5/12*PI^2+7/2*M_EG^2) + O(b^2)

    polygamma(1, b)/Gamma(b) = 1/b + M_EG + b*(1/12*PI^2 + 1/2*M_EG^2) + O(b^2)

    and so on.

    """
    order = 5
    a, b, x, k = symbols("a b x k")
    M_PI, M_EG, M_Z3 = symbols("M_PI M_EG M_Z3")
    c_subs = {pi: M_PI, EulerGamma: M_EG, zeta(3): M_Z3}
    A = []  # terms with a
    X = []  # terms with x
    B = []  # terms with b (polygammas expanded)
    C = []  # terms that generate B
    # Phi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i])
    # B[0] = 1
    # B[k] = sum(C[k] * b**k/k!, k=0..)
    # Note: C[k] can be obtained from a series expansion of 1/gamma(b).
    expression = gamma(b)/sympy.exp(x) * \
        Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity))

    # nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0)
    for n in range(0, order+1):
        term = expression.diff(a, n).subs(a, 0).simplify().doit()
        # set the whole bracket involving polygammas to 1
        x_part = (term.subs(polygamma(0, b), 1)
                  .replace(polygamma, lambda *args: 0))
        # sign convention: x part always positive
        x_part *= (-1)**n
        # expansion of polygamma part with 1/gamma(b)
        pg_part = term/x_part/gamma(b)
        if n >= 1:
            # Note: highest term is digamma^n
            pg_part = pg_part.replace(polygamma,
                                      lambda k, x: pg_series(k, x, order+1+n))
            pg_part = (pg_part.series(b, 0, n=order+1-n)
                       .removeO()
                       .subs(polygamma(2, 1), -2*zeta(3))
                       .simplify()
                       )

        A.append(a**n/factorial(n))
        X.append(horner(x_part))
        B.append(pg_part)

    # Calculate C and put in the k!
    C = sympy.Poly(B[1].subs(c_subs), b).coeffs()
    C.reverse()
    for i in range(len(C)):
        C[i] = (C[i] * factorial(i)).simplify()

    s = "Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5."
    s += "\nPhi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i], i=0..5)\n"
    s += "B[0] = 1\n"
    s += "B[i] = sum(C[k+i-1] * b**k/k!, k=0..)\n"
    s += "\nM_PI = pi"
    s += "\nM_EG = EulerGamma"
    s += "\nM_Z3 = zeta(3)"
    for name, c in zip(['A', 'X'], [A, X]):
        for i in range(len(c)):
            s += f"\n{name}[{i}] = "
            s += str(c[i])
    # For C, do also compute the values numerically
    for i in range(len(C)):
        s += f"\n# C[{i}] = "
        s += str(C[i])
        s += f"\nC[{i}] = "
        s += str(C[i].subs({M_EG: EulerGamma, M_PI: pi, M_Z3: zeta(3)})
                 .evalf(17))

    # Does B have the assumed structure?
    s += "\n\nTest if B[i] does have the assumed structure."
    s += "\nC[i] are derived from B[1] alone."
    s += "\nTest B[2] == C[1] + b*C[2] + b^2/2*C[3] + b^3/6*C[4] + .."
    test = sum([b**k/factorial(k) * C[k+1] for k in range(order-1)])
    test = (test - B[2].subs(c_subs)).simplify()
    s += f"\ntest successful = {test==S(0)}"
    s += "\nTest B[3] == C[2] + b*C[3] + b^2/2*C[4] + .."
    test = sum([b**k/factorial(k) * C[k+2] for k in range(order-2)])
    test = (test - B[3].subs(c_subs)).simplify()
    s += f"\ntest successful = {test==S(0)}"
    return s


def asymptotic_series():
    """Asymptotic expansion for large x.



    Phi(a, b, x) ~ Z^(1/2-b) * exp((1+a)/a * Z) * sum_k (-1)^k * C_k / Z^k

    Z = (a*x)^(1/(1+a))



    Wright (1935) lists the coefficients C_0 and C_1 (he calls them a_0 and

    a_1). With slightly different notation, Paris (2017) lists coefficients

    c_k up to order k=3.

    Paris (2017) uses ZP = (1+a)/a * Z  (ZP = Z of Paris) and

    C_k = C_0 * (-a/(1+a))^k * c_k

    """
    order = 8

    class g(sympy.Function):
        """Helper function g according to Wright (1935)



        g(n, rho, v) = (1 + (rho+2)/3 * v + (rho+2)*(rho+3)/(2*3) * v^2 + ...)



        Note: Wright (1935) uses square root of above definition.

        """
        nargs = 3

        @classmethod
        def eval(cls, n, rho, v):
            if not n >= 0:
                raise ValueError("must have n >= 0")
            elif n == 0:
                return 1
            else:
                return g(n-1, rho, v) \
                    + gammasimp(gamma(rho+2+n)/gamma(rho+2)) \
                    / gammasimp(gamma(3+n)/gamma(3))*v**n

    class coef_C(sympy.Function):
        """Calculate coefficients C_m for integer m.



        C_m is the coefficient of v^(2*m) in the Taylor expansion in v=0 of

        Gamma(m+1/2)/(2*pi) * (2/(rho+1))^(m+1/2) * (1-v)^(-b)

            * g(rho, v)^(-m-1/2)

        """
        nargs = 3

        @classmethod
        def eval(cls, m, rho, beta):
            if not m >= 0:
                raise ValueError("must have m >= 0")

            v = symbols("v")
            expression = (1-v)**(-beta) * g(2*m, rho, v)**(-m-Rational(1, 2))
            res = expression.diff(v, 2*m).subs(v, 0) / factorial(2*m)
            res = res * (gamma(m + Rational(1, 2)) / (2*pi)
                         * (2/(rho+1))**(m + Rational(1, 2)))
            return res

    # in order to have nice ordering/sorting of expressions, we set a = xa.
    xa, b, xap1 = symbols("xa b xap1")
    C0 = coef_C(0, xa, b)
    # a1 = a(1, rho, beta)
    s = "Asymptotic expansion for large x\n"
    s += "Phi(a, b, x) = Z**(1/2-b) * exp((1+a)/a * Z) \n"
    s += "               * sum((-1)**k * C[k]/Z**k, k=0..6)\n\n"
    s += "Z      = pow(a * x, 1/(1+a))\n"
    s += "A[k]   = pow(a, k)\n"
    s += "B[k]   = pow(b, k)\n"
    s += "Ap1[k] = pow(1+a, k)\n\n"
    s += "C[0] = 1./sqrt(2. * M_PI * Ap1[1])\n"
    for i in range(1, order+1):
        expr = (coef_C(i, xa, b) / (C0/(1+xa)**i)).simplify()
        factor = [x.denominator() for x in sympy.Poly(expr).coeffs()]
        factor = sympy.lcm(factor)
        expr = (expr * factor).simplify().collect(b, sympy.factor)
        expr = expr.xreplace({xa+1: xap1})
        s += f"C[{i}] = C[0] / ({factor} * Ap1[{i}])\n"
        s += f"C[{i}] *= {str(expr)}\n\n"
    import re
    re_a = re.compile(r'xa\*\*(\d+)')
    s = re_a.sub(r'A[\1]', s)
    re_b = re.compile(r'b\*\*(\d+)')
    s = re_b.sub(r'B[\1]', s)
    s = s.replace('xap1', 'Ap1[1]')
    s = s.replace('xa', 'a')
    # max integer = 2^31-1 = 2,147,483,647. Solution: Put a point after 10
    # or more digits.
    re_digits = re.compile(r'(\d{10,})')
    s = re_digits.sub(r'\1.', s)
    return s


def optimal_epsilon_integral():
    """Fit optimal choice of epsilon for integral representation.



    The integrand of

        int_0^pi P(eps, a, b, x, phi) * dphi

    can exhibit oscillatory behaviour. It stems from the cosine of P and can be

    minimized by minimizing the arc length of the argument

        f(phi) = eps * sin(phi) - x * eps^(-a) * sin(a * phi) + (1 - b) * phi

    of cos(f(phi)).

    We minimize the arc length in eps for a grid of values (a, b, x) and fit a

    parametric function to it.

    """
    def fp(eps, a, b, x, phi):
        """Derivative of f w.r.t. phi."""
        eps_a = np.power(1. * eps, -a)
        return eps * np.cos(phi) - a * x * eps_a * np.cos(a * phi) + 1 - b

    def arclength(eps, a, b, x, epsrel=1e-2, limit=100):
        """Compute Arc length of f.



        Note that the arc length of a function f from t0 to t1 is given by

            int_t0^t1 sqrt(1 + f'(t)^2) dt

        """
        return quad(lambda phi: np.sqrt(1 + fp(eps, a, b, x, phi)**2),
                    0, np.pi,
                    epsrel=epsrel, limit=100)[0]

    # grid of minimal arc length values
    data_a = [1e-3, 0.1, 0.5, 0.9, 1, 2, 4, 5, 6, 8]
    data_b = [0, 1, 4, 7, 10]
    data_x = [1, 1.5, 2, 4, 10, 20, 50, 100, 200, 500, 1e3, 5e3, 1e4]
    data_a, data_b, data_x = np.meshgrid(data_a, data_b, data_x)
    data_a, data_b, data_x = (data_a.flatten(), data_b.flatten(),
                              data_x.flatten())
    best_eps = []
    for i in range(data_x.size):
        best_eps.append(
            minimize_scalar(lambda eps: arclength(eps, data_a[i], data_b[i],
                                                  data_x[i]),
                            bounds=(1e-3, 1000),
                            method='Bounded', options={'xatol': 1e-3}).x
        )
    best_eps = np.array(best_eps)
    # pandas would be nice, but here a dictionary is enough
    df = {'a': data_a,
          'b': data_b,
          'x': data_x,
          'eps': best_eps,
          }

    def func(data, A0, A1, A2, A3, A4, A5):
        """Compute parametric function to fit."""
        a = data['a']
        b = data['b']
        x = data['x']
        return (A0 * b * np.exp(-0.5 * a)
                + np.exp(A1 + 1 / (1 + a) * np.log(x) - A2 * np.exp(-A3 * a)
                         + A4 / (1 + np.exp(A5 * a))))

    func_params = list(curve_fit(func, df, df['eps'], method='trf')[0])

    s = "Fit optimal eps for integrand P via minimal arc length\n"
    s += "with parametric function:\n"
    s += "optimal_eps = (A0 * b * exp(-a/2) + exp(A1 + 1 / (1 + a) * log(x)\n"
    s += "              - A2 * exp(-A3 * a) + A4 / (1 + exp(A5 * a)))\n\n"
    s += "Fitted parameters A0 to A5 are:\n"
    s += ', '.join([f'{x:.5g}' for x in func_params])
    return s


def main():
    t0 = time()
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawTextHelpFormatter)
    parser.add_argument('action', type=int, choices=[1, 2, 3, 4],
                        help='chose what expansion to precompute\n'
                             '1 : Series for small a\n'
                             '2 : Series for small a and small b\n'
                             '3 : Asymptotic series for large x\n'
                             '    This may take some time (>4h).\n'
                             '4 : Fit optimal eps for integral representation.'
                        )
    args = parser.parse_args()

    switch = {1: lambda: print(series_small_a()),
              2: lambda: print(series_small_a_small_b()),
              3: lambda: print(asymptotic_series()),
              4: lambda: print(optimal_epsilon_integral())
              }
    switch.get(args.action, lambda: print("Invalid input."))()
    print(f"\n{(time() - t0)/60:.1f} minutes elapsed.\n")


if __name__ == '__main__':
    main()