File size: 5,799 Bytes
dffca60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
"""Compute a grid of values for Wright's generalized Bessel function
and save the values to data files for use in tests. Using mpmath directly in
tests would take too long.
This takes about 10 minutes to run on a 2.7 GHz i7 Macbook Pro.
"""
from functools import lru_cache
import os
from time import time
import numpy as np
from scipy.special._mptestutils import mpf2float
try:
import mpmath as mp
except ImportError:
pass
# exp_inf: smallest value x for which exp(x) == inf
exp_inf = 709.78271289338403
# 64 Byte per value
@lru_cache(maxsize=100_000)
def rgamma_cached(x, dps):
with mp.workdps(dps):
return mp.rgamma(x)
def mp_wright_bessel(a, b, x, dps=50, maxterms=2000):
"""Compute Wright's generalized Bessel function as Series with mpmath.
"""
with mp.workdps(dps):
a, b, x = mp.mpf(a), mp.mpf(b), mp.mpf(x)
res = mp.nsum(lambda k: x**k / mp.fac(k)
* rgamma_cached(a * k + b, dps=dps),
[0, mp.inf],
tol=dps, method='s', steps=[maxterms]
)
return mpf2float(res)
def main():
t0 = time()
print(__doc__)
pwd = os.path.dirname(__file__)
eps = np.finfo(float).eps * 100
a_range = np.array([eps,
1e-4 * (1 - eps), 1e-4, 1e-4 * (1 + eps),
1e-3 * (1 - eps), 1e-3, 1e-3 * (1 + eps),
0.1, 0.5,
1 * (1 - eps), 1, 1 * (1 + eps),
1.5, 2, 4.999, 5, 10])
b_range = np.array([0, eps, 1e-10, 1e-5, 0.1, 1, 2, 10, 20, 100])
x_range = np.array([0, eps, 1 - eps, 1, 1 + eps,
1.5,
2 - eps, 2, 2 + eps,
9 - eps, 9, 9 + eps,
10 * (1 - eps), 10, 10 * (1 + eps),
100 * (1 - eps), 100, 100 * (1 + eps),
500, exp_inf, 1e3, 1e5, 1e10, 1e20])
a_range, b_range, x_range = np.meshgrid(a_range, b_range, x_range,
indexing='ij')
a_range = a_range.flatten()
b_range = b_range.flatten()
x_range = x_range.flatten()
# filter out some values, especially too large x
bool_filter = ~((a_range < 5e-3) & (x_range >= exp_inf))
bool_filter = bool_filter & ~((a_range < 0.2) & (x_range > exp_inf))
bool_filter = bool_filter & ~((a_range < 0.5) & (x_range > 1e3))
bool_filter = bool_filter & ~((a_range < 0.56) & (x_range > 5e3))
bool_filter = bool_filter & ~((a_range < 1) & (x_range > 1e4))
bool_filter = bool_filter & ~((a_range < 1.4) & (x_range > 1e5))
bool_filter = bool_filter & ~((a_range < 1.8) & (x_range > 1e6))
bool_filter = bool_filter & ~((a_range < 2.2) & (x_range > 1e7))
bool_filter = bool_filter & ~((a_range < 2.5) & (x_range > 1e8))
bool_filter = bool_filter & ~((a_range < 2.9) & (x_range > 1e9))
bool_filter = bool_filter & ~((a_range < 3.3) & (x_range > 1e10))
bool_filter = bool_filter & ~((a_range < 3.7) & (x_range > 1e11))
bool_filter = bool_filter & ~((a_range < 4) & (x_range > 1e12))
bool_filter = bool_filter & ~((a_range < 4.4) & (x_range > 1e13))
bool_filter = bool_filter & ~((a_range < 4.7) & (x_range > 1e14))
bool_filter = bool_filter & ~((a_range < 5.1) & (x_range > 1e15))
bool_filter = bool_filter & ~((a_range < 5.4) & (x_range > 1e16))
bool_filter = bool_filter & ~((a_range < 5.8) & (x_range > 1e17))
bool_filter = bool_filter & ~((a_range < 6.2) & (x_range > 1e18))
bool_filter = bool_filter & ~((a_range < 6.2) & (x_range > 1e18))
bool_filter = bool_filter & ~((a_range < 6.5) & (x_range > 1e19))
bool_filter = bool_filter & ~((a_range < 6.9) & (x_range > 1e20))
# filter out known values that do not meet the required numerical accuracy
# see test test_wright_data_grid_failures
failing = np.array([
[0.1, 100, 709.7827128933841],
[0.5, 10, 709.7827128933841],
[0.5, 10, 1000],
[0.5, 100, 1000],
[1, 20, 100000],
[1, 100, 100000],
[1.0000000000000222, 20, 100000],
[1.0000000000000222, 100, 100000],
[1.5, 0, 500],
[1.5, 2.220446049250313e-14, 500],
[1.5, 1.e-10, 500],
[1.5, 1.e-05, 500],
[1.5, 0.1, 500],
[1.5, 20, 100000],
[1.5, 100, 100000],
]).tolist()
does_fail = np.full_like(a_range, False, dtype=bool)
for i in range(x_range.size):
if [a_range[i], b_range[i], x_range[i]] in failing:
does_fail[i] = True
# filter and flatten
a_range = a_range[bool_filter]
b_range = b_range[bool_filter]
x_range = x_range[bool_filter]
does_fail = does_fail[bool_filter]
dataset = []
print(f"Computing {x_range.size} single points.")
print("Tests will fail for the following data points:")
for i in range(x_range.size):
a = a_range[i]
b = b_range[i]
x = x_range[i]
# take care of difficult corner cases
maxterms = 1000
if a < 1e-6 and x >= exp_inf/10:
maxterms = 2000
f = mp_wright_bessel(a, b, x, maxterms=maxterms)
if does_fail[i]:
print("failing data point a, b, x, value = "
f"[{a}, {b}, {x}, {f}]")
else:
dataset.append((a, b, x, f))
dataset = np.array(dataset)
filename = os.path.join(pwd, '..', 'tests', 'data', 'local',
'wright_bessel.txt')
np.savetxt(filename, dataset)
print(f"{(time() - t0)/60:.1f} minutes elapsed")
if __name__ == "__main__":
main()
|