|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ..components.feedforward import FeedForwardConfig, create_feedforward |
|
from ..components.ln import LayerNorm |
|
from .mlstm.layer import mLSTMLayer, mLSTMLayerConfig |
|
from .slstm.layer import sLSTMLayer, sLSTMLayerConfig |
|
|
|
|
|
|
|
@dataclass |
|
class xLSTMBlockConfig: |
|
mlstm: Optional[mLSTMLayerConfig] = None |
|
slstm: Optional[sLSTMLayerConfig] = None |
|
|
|
feedforward: Optional[FeedForwardConfig] = None |
|
|
|
|
|
_num_blocks: int = None |
|
_block_idx: int = None |
|
|
|
def __post_init__(self): |
|
assert self.mlstm is not None or self.slstm is not None, "Either mlstm or slstm must be provided" |
|
assert self.mlstm is None or self.slstm is None, "Only one of mlstm or slstm can be provided" |
|
embedding_dim = self.mlstm.embedding_dim if self.mlstm is not None else self.slstm.embedding_dim |
|
if self.mlstm: |
|
self.mlstm._num_blocks = self._num_blocks |
|
self.mlstm._block_idx = self._block_idx |
|
if self.slstm: |
|
self.slstm._num_blocks = self._num_blocks |
|
self.slstm._block_idx = self._block_idx |
|
if self.feedforward: |
|
self.feedforward.embedding_dim = embedding_dim |
|
self.feedforward._num_blocks = self._num_blocks |
|
self.feedforward.__post_init__() |
|
|
|
|
|
class xLSTMBlock(nn.Module): |
|
"""An xLSTM block can be either an sLSTM Block or an mLSTM Block. |
|
|
|
It contains the pre-LayerNorms and the skip connections. |
|
""" |
|
|
|
config_class = xLSTMBlockConfig |
|
|
|
def __init__(self, config: xLSTMBlockConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
embedding_dim = ( |
|
self.config.mlstm.embedding_dim if self.config.mlstm is not None else self.config.slstm.embedding_dim |
|
) |
|
|
|
self.xlstm_norm = LayerNorm(ndim=embedding_dim, weight=True, bias=False) |
|
|
|
if self.config.mlstm is not None: |
|
self.xlstm = mLSTMLayer(config=self.config.mlstm) |
|
elif self.config.slstm is not None: |
|
self.xlstm = sLSTMLayer(config=self.config.slstm) |
|
else: |
|
raise ValueError("Either mlstm or slstm must be provided") |
|
|
|
if self.config.feedforward is not None: |
|
self.ffn_norm = LayerNorm(ndim=self.config.feedforward.embedding_dim, weight=True, bias=False) |
|
self.ffn = create_feedforward(config=self.config.feedforward) |
|
else: |
|
self.ffn_norm = None |
|
self.ffn = None |
|
|
|
self.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
x = x + self.xlstm(self.xlstm_norm(x), **kwargs) |
|
if self.ffn is not None: |
|
x = x + self.ffn(self.ffn_norm(x), **kwargs) |
|
return x |
|
|
|
def step(self, x: torch.Tensor, **kwargs) -> tuple[torch.Tensor, dict[str, tuple[torch.Tensor, ...]]]: |
|
x_xlstm, xlstm_state = self.xlstm.step(self.xlstm_norm(x), **kwargs) |
|
x = x + x_xlstm |
|
if self.ffn is not None: |
|
x = x + self.ffn(self.ffn_norm(x), **kwargs) |
|
return x, xlstm_state |
|
|
|
def reset_parameters(self) -> None: |
|
self.xlstm.reset_parameters() |
|
self.xlstm_norm.reset_parameters() |
|
if self.ffn is not None: |
|
self.ffn.reset_parameters() |
|
self.ffn_norm.reset_parameters() |
|
|