|
from math import floor, log, pi
|
|
from typing import Any, List, Optional, Sequence, Tuple, Union
|
|
|
|
from .utils import *
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange, reduce, repeat
|
|
from einops.layers.torch import Rearrange
|
|
from einops_exts import rearrange_many
|
|
from torch import Tensor, einsum
|
|
|
|
|
|
"""
|
|
Utils
|
|
"""
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
def __init__(self, style_dim, channels, eps=1e-5):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.eps = eps
|
|
|
|
self.fc = nn.Linear(style_dim, channels*2)
|
|
|
|
def forward(self, x, s):
|
|
x = x.transpose(-1, -2)
|
|
x = x.transpose(1, -1)
|
|
|
|
h = self.fc(s)
|
|
h = h.view(h.size(0), h.size(1), 1)
|
|
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
|
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
|
|
|
|
|
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
|
x = (1 + gamma) * x + beta
|
|
return x.transpose(1, -1).transpose(-1, -2)
|
|
|
|
class StyleTransformer1d(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_layers: int,
|
|
channels: int,
|
|
num_heads: int,
|
|
head_features: int,
|
|
multiplier: int,
|
|
use_context_time: bool = True,
|
|
use_rel_pos: bool = False,
|
|
context_features_multiplier: int = 1,
|
|
rel_pos_num_buckets: Optional[int] = None,
|
|
rel_pos_max_distance: Optional[int] = None,
|
|
context_features: Optional[int] = None,
|
|
context_embedding_features: Optional[int] = None,
|
|
embedding_max_length: int = 512,
|
|
):
|
|
super().__init__()
|
|
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
StyleTransformerBlock(
|
|
features=channels + context_embedding_features,
|
|
head_features=head_features,
|
|
num_heads=num_heads,
|
|
multiplier=multiplier,
|
|
style_dim=context_features,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
for i in range(num_layers)
|
|
]
|
|
)
|
|
|
|
self.to_out = nn.Sequential(
|
|
Rearrange("b t c -> b c t"),
|
|
nn.Conv1d(
|
|
in_channels=channels + context_embedding_features,
|
|
out_channels=channels,
|
|
kernel_size=1,
|
|
),
|
|
)
|
|
|
|
use_context_features = exists(context_features)
|
|
self.use_context_features = use_context_features
|
|
self.use_context_time = use_context_time
|
|
|
|
if use_context_time or use_context_features:
|
|
context_mapping_features = channels + context_embedding_features
|
|
|
|
self.to_mapping = nn.Sequential(
|
|
nn.Linear(context_mapping_features, context_mapping_features),
|
|
nn.GELU(),
|
|
nn.Linear(context_mapping_features, context_mapping_features),
|
|
nn.GELU(),
|
|
)
|
|
|
|
if use_context_time:
|
|
assert exists(context_mapping_features)
|
|
self.to_time = nn.Sequential(
|
|
TimePositionalEmbedding(
|
|
dim=channels, out_features=context_mapping_features
|
|
),
|
|
nn.GELU(),
|
|
)
|
|
|
|
if use_context_features:
|
|
assert exists(context_features) and exists(context_mapping_features)
|
|
self.to_features = nn.Sequential(
|
|
nn.Linear(
|
|
in_features=context_features, out_features=context_mapping_features
|
|
),
|
|
nn.GELU(),
|
|
)
|
|
|
|
self.fixed_embedding = FixedEmbedding(
|
|
max_length=embedding_max_length, features=context_embedding_features
|
|
)
|
|
|
|
|
|
def get_mapping(
|
|
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
|
) -> Optional[Tensor]:
|
|
"""Combines context time features and features into mapping"""
|
|
items, mapping = [], None
|
|
|
|
if self.use_context_time:
|
|
assert_message = "use_context_time=True but no time features provided"
|
|
assert exists(time), assert_message
|
|
items += [self.to_time(time)]
|
|
|
|
if self.use_context_features:
|
|
assert_message = "context_features exists but no features provided"
|
|
assert exists(features), assert_message
|
|
items += [self.to_features(features)]
|
|
|
|
|
|
if self.use_context_time or self.use_context_features:
|
|
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
|
mapping = self.to_mapping(mapping)
|
|
|
|
return mapping
|
|
|
|
def run(self, x, time, embedding, features):
|
|
|
|
mapping = self.get_mapping(time, features)
|
|
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
|
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
|
|
|
for block in self.blocks:
|
|
x = x + mapping
|
|
x = block(x, features)
|
|
|
|
x = x.mean(axis=1).unsqueeze(1)
|
|
x = self.to_out(x)
|
|
x = x.transpose(-1, -2)
|
|
|
|
return x
|
|
|
|
def forward(self, x: Tensor,
|
|
time: Tensor,
|
|
embedding_mask_proba: float = 0.0,
|
|
embedding: Optional[Tensor] = None,
|
|
features: Optional[Tensor] = None,
|
|
embedding_scale: float = 1.0) -> Tensor:
|
|
|
|
b, device = embedding.shape[0], embedding.device
|
|
fixed_embedding = self.fixed_embedding(embedding)
|
|
if embedding_mask_proba > 0.0:
|
|
|
|
batch_mask = rand_bool(
|
|
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
|
)
|
|
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
|
|
|
if embedding_scale != 1.0:
|
|
|
|
out = self.run(x, time, embedding=embedding, features=features)
|
|
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
|
|
|
return out_masked + (out - out_masked) * embedding_scale
|
|
else:
|
|
return self.run(x, time, embedding=embedding, features=features)
|
|
|
|
return x
|
|
|
|
|
|
class StyleTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
features: int,
|
|
num_heads: int,
|
|
head_features: int,
|
|
style_dim: int,
|
|
multiplier: int,
|
|
use_rel_pos: bool,
|
|
rel_pos_num_buckets: Optional[int] = None,
|
|
rel_pos_max_distance: Optional[int] = None,
|
|
context_features: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.use_cross_attention = exists(context_features) and context_features > 0
|
|
|
|
self.attention = StyleAttention(
|
|
features=features,
|
|
style_dim=style_dim,
|
|
num_heads=num_heads,
|
|
head_features=head_features,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
|
|
if self.use_cross_attention:
|
|
self.cross_attention = StyleAttention(
|
|
features=features,
|
|
style_dim=style_dim,
|
|
num_heads=num_heads,
|
|
head_features=head_features,
|
|
context_features=context_features,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
|
|
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
|
|
|
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
|
x = self.attention(x, s) + x
|
|
if self.use_cross_attention:
|
|
x = self.cross_attention(x, s, context=context) + x
|
|
x = self.feed_forward(x) + x
|
|
return x
|
|
|
|
class StyleAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
features: int,
|
|
*,
|
|
style_dim: int,
|
|
head_features: int,
|
|
num_heads: int,
|
|
context_features: Optional[int] = None,
|
|
use_rel_pos: bool,
|
|
rel_pos_num_buckets: Optional[int] = None,
|
|
rel_pos_max_distance: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.context_features = context_features
|
|
mid_features = head_features * num_heads
|
|
context_features = default(context_features, features)
|
|
|
|
self.norm = AdaLayerNorm(style_dim, features)
|
|
self.norm_context = AdaLayerNorm(style_dim, context_features)
|
|
self.to_q = nn.Linear(
|
|
in_features=features, out_features=mid_features, bias=False
|
|
)
|
|
self.to_kv = nn.Linear(
|
|
in_features=context_features, out_features=mid_features * 2, bias=False
|
|
)
|
|
self.attention = AttentionBase(
|
|
features,
|
|
num_heads=num_heads,
|
|
head_features=head_features,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
|
|
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
|
assert_message = "You must provide a context when using context_features"
|
|
assert not self.context_features or exists(context), assert_message
|
|
|
|
context = default(context, x)
|
|
|
|
x, context = self.norm(x, s), self.norm_context(context, s)
|
|
|
|
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
|
|
|
return self.attention(q, k, v)
|
|
|
|
class Transformer1d(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_layers: int,
|
|
channels: int,
|
|
num_heads: int,
|
|
head_features: int,
|
|
multiplier: int,
|
|
use_context_time: bool = True,
|
|
use_rel_pos: bool = False,
|
|
context_features_multiplier: int = 1,
|
|
rel_pos_num_buckets: Optional[int] = None,
|
|
rel_pos_max_distance: Optional[int] = None,
|
|
context_features: Optional[int] = None,
|
|
context_embedding_features: Optional[int] = None,
|
|
embedding_max_length: int = 512,
|
|
):
|
|
super().__init__()
|
|
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
TransformerBlock(
|
|
features=channels + context_embedding_features,
|
|
head_features=head_features,
|
|
num_heads=num_heads,
|
|
multiplier=multiplier,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
for i in range(num_layers)
|
|
]
|
|
)
|
|
|
|
self.to_out = nn.Sequential(
|
|
Rearrange("b t c -> b c t"),
|
|
nn.Conv1d(
|
|
in_channels=channels + context_embedding_features,
|
|
out_channels=channels,
|
|
kernel_size=1,
|
|
),
|
|
)
|
|
|
|
use_context_features = exists(context_features)
|
|
self.use_context_features = use_context_features
|
|
self.use_context_time = use_context_time
|
|
|
|
if use_context_time or use_context_features:
|
|
context_mapping_features = channels + context_embedding_features
|
|
|
|
self.to_mapping = nn.Sequential(
|
|
nn.Linear(context_mapping_features, context_mapping_features),
|
|
nn.GELU(),
|
|
nn.Linear(context_mapping_features, context_mapping_features),
|
|
nn.GELU(),
|
|
)
|
|
|
|
if use_context_time:
|
|
assert exists(context_mapping_features)
|
|
self.to_time = nn.Sequential(
|
|
TimePositionalEmbedding(
|
|
dim=channels, out_features=context_mapping_features
|
|
),
|
|
nn.GELU(),
|
|
)
|
|
|
|
if use_context_features:
|
|
assert exists(context_features) and exists(context_mapping_features)
|
|
self.to_features = nn.Sequential(
|
|
nn.Linear(
|
|
in_features=context_features, out_features=context_mapping_features
|
|
),
|
|
nn.GELU(),
|
|
)
|
|
|
|
self.fixed_embedding = FixedEmbedding(
|
|
max_length=embedding_max_length, features=context_embedding_features
|
|
)
|
|
|
|
|
|
def get_mapping(
|
|
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
|
) -> Optional[Tensor]:
|
|
"""Combines context time features and features into mapping"""
|
|
items, mapping = [], None
|
|
|
|
if self.use_context_time:
|
|
assert_message = "use_context_time=True but no time features provided"
|
|
assert exists(time), assert_message
|
|
items += [self.to_time(time)]
|
|
|
|
if self.use_context_features:
|
|
assert_message = "context_features exists but no features provided"
|
|
assert exists(features), assert_message
|
|
items += [self.to_features(features)]
|
|
|
|
|
|
if self.use_context_time or self.use_context_features:
|
|
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
|
mapping = self.to_mapping(mapping)
|
|
|
|
return mapping
|
|
|
|
def run(self, x, time, embedding, features):
|
|
|
|
mapping = self.get_mapping(time, features)
|
|
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
|
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
|
|
|
for block in self.blocks:
|
|
x = x + mapping
|
|
x = block(x)
|
|
|
|
x = x.mean(axis=1).unsqueeze(1)
|
|
x = self.to_out(x)
|
|
x = x.transpose(-1, -2)
|
|
|
|
return x
|
|
|
|
def forward(self, x: Tensor,
|
|
time: Tensor,
|
|
embedding_mask_proba: float = 0.0,
|
|
embedding: Optional[Tensor] = None,
|
|
features: Optional[Tensor] = None,
|
|
embedding_scale: float = 1.0) -> Tensor:
|
|
|
|
b, device = embedding.shape[0], embedding.device
|
|
fixed_embedding = self.fixed_embedding(embedding)
|
|
if embedding_mask_proba > 0.0:
|
|
|
|
batch_mask = rand_bool(
|
|
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
|
)
|
|
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
|
|
|
if embedding_scale != 1.0:
|
|
|
|
out = self.run(x, time, embedding=embedding, features=features)
|
|
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
|
|
|
return out_masked + (out - out_masked) * embedding_scale
|
|
else:
|
|
return self.run(x, time, embedding=embedding, features=features)
|
|
|
|
return x
|
|
|
|
|
|
"""
|
|
Attention Components
|
|
"""
|
|
|
|
|
|
class RelativePositionBias(nn.Module):
|
|
def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
|
|
super().__init__()
|
|
self.num_buckets = num_buckets
|
|
self.max_distance = max_distance
|
|
self.num_heads = num_heads
|
|
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
|
|
|
@staticmethod
|
|
def _relative_position_bucket(
|
|
relative_position: Tensor, num_buckets: int, max_distance: int
|
|
):
|
|
num_buckets //= 2
|
|
ret = (relative_position >= 0).to(torch.long) * num_buckets
|
|
n = torch.abs(relative_position)
|
|
|
|
max_exact = num_buckets // 2
|
|
is_small = n < max_exact
|
|
|
|
val_if_large = (
|
|
max_exact
|
|
+ (
|
|
torch.log(n.float() / max_exact)
|
|
/ log(max_distance / max_exact)
|
|
* (num_buckets - max_exact)
|
|
).long()
|
|
)
|
|
val_if_large = torch.min(
|
|
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
|
|
)
|
|
|
|
ret += torch.where(is_small, n, val_if_large)
|
|
return ret
|
|
|
|
def forward(self, num_queries: int, num_keys: int) -> Tensor:
|
|
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
|
|
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
|
|
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
|
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
|
|
|
|
relative_position_bucket = self._relative_position_bucket(
|
|
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
|
|
)
|
|
|
|
bias = self.relative_attention_bias(relative_position_bucket)
|
|
bias = rearrange(bias, "m n h -> 1 h m n")
|
|
return bias
|
|
|
|
|
|
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
|
mid_features = features * multiplier
|
|
return nn.Sequential(
|
|
nn.Linear(in_features=features, out_features=mid_features),
|
|
nn.GELU(),
|
|
nn.Linear(in_features=mid_features, out_features=features),
|
|
)
|
|
|
|
|
|
class AttentionBase(nn.Module):
|
|
def __init__(
|
|
self,
|
|
features: int,
|
|
*,
|
|
head_features: int,
|
|
num_heads: int,
|
|
use_rel_pos: bool,
|
|
out_features: Optional[int] = None,
|
|
rel_pos_num_buckets: Optional[int] = None,
|
|
rel_pos_max_distance: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.scale = head_features ** -0.5
|
|
self.num_heads = num_heads
|
|
self.use_rel_pos = use_rel_pos
|
|
mid_features = head_features * num_heads
|
|
|
|
if use_rel_pos:
|
|
assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
|
|
self.rel_pos = RelativePositionBias(
|
|
num_buckets=rel_pos_num_buckets,
|
|
max_distance=rel_pos_max_distance,
|
|
num_heads=num_heads,
|
|
)
|
|
if out_features is None:
|
|
out_features = features
|
|
|
|
self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
|
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
|
|
|
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
|
|
|
|
sim = einsum("... n d, ... m d -> ... n m", q, k)
|
|
sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
|
|
sim = sim * self.scale
|
|
|
|
attn = sim.softmax(dim=-1)
|
|
|
|
out = einsum("... n m, ... m d -> ... n d", attn, v)
|
|
out = rearrange(out, "b h n d -> b n (h d)")
|
|
return self.to_out(out)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
features: int,
|
|
*,
|
|
head_features: int,
|
|
num_heads: int,
|
|
out_features: Optional[int] = None,
|
|
context_features: Optional[int] = None,
|
|
use_rel_pos: bool,
|
|
rel_pos_num_buckets: Optional[int] = None,
|
|
rel_pos_max_distance: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.context_features = context_features
|
|
mid_features = head_features * num_heads
|
|
context_features = default(context_features, features)
|
|
|
|
self.norm = nn.LayerNorm(features)
|
|
self.norm_context = nn.LayerNorm(context_features)
|
|
self.to_q = nn.Linear(
|
|
in_features=features, out_features=mid_features, bias=False
|
|
)
|
|
self.to_kv = nn.Linear(
|
|
in_features=context_features, out_features=mid_features * 2, bias=False
|
|
)
|
|
|
|
self.attention = AttentionBase(
|
|
features,
|
|
out_features=out_features,
|
|
num_heads=num_heads,
|
|
head_features=head_features,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
|
|
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
|
assert_message = "You must provide a context when using context_features"
|
|
assert not self.context_features or exists(context), assert_message
|
|
|
|
context = default(context, x)
|
|
|
|
x, context = self.norm(x), self.norm_context(context)
|
|
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
|
|
|
return self.attention(q, k, v)
|
|
|
|
|
|
"""
|
|
Transformer Blocks
|
|
"""
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
features: int,
|
|
num_heads: int,
|
|
head_features: int,
|
|
multiplier: int,
|
|
use_rel_pos: bool,
|
|
rel_pos_num_buckets: Optional[int] = None,
|
|
rel_pos_max_distance: Optional[int] = None,
|
|
context_features: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.use_cross_attention = exists(context_features) and context_features > 0
|
|
|
|
self.attention = Attention(
|
|
features=features,
|
|
num_heads=num_heads,
|
|
head_features=head_features,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
|
|
if self.use_cross_attention:
|
|
self.cross_attention = Attention(
|
|
features=features,
|
|
num_heads=num_heads,
|
|
head_features=head_features,
|
|
context_features=context_features,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_num_buckets=rel_pos_num_buckets,
|
|
rel_pos_max_distance=rel_pos_max_distance,
|
|
)
|
|
|
|
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
|
|
|
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
|
x = self.attention(x) + x
|
|
if self.use_cross_attention:
|
|
x = self.cross_attention(x, context=context) + x
|
|
x = self.feed_forward(x) + x
|
|
return x
|
|
|
|
|
|
|
|
"""
|
|
Time Embeddings
|
|
"""
|
|
|
|
|
|
class SinusoidalEmbedding(nn.Module):
|
|
def __init__(self, dim: int):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
device, half_dim = x.device, self.dim // 2
|
|
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
|
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
|
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
|
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
|
|
|
|
|
class LearnedPositionalEmbedding(nn.Module):
|
|
"""Used for continuous time"""
|
|
|
|
def __init__(self, dim: int):
|
|
super().__init__()
|
|
assert (dim % 2) == 0
|
|
half_dim = dim // 2
|
|
self.weights = nn.Parameter(torch.randn(half_dim))
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
x = rearrange(x, "b -> b 1")
|
|
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
|
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
|
fouriered = torch.cat((x, fouriered), dim=-1)
|
|
return fouriered
|
|
|
|
|
|
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
|
return nn.Sequential(
|
|
LearnedPositionalEmbedding(dim),
|
|
nn.Linear(in_features=dim + 1, out_features=out_features),
|
|
)
|
|
|
|
class FixedEmbedding(nn.Module):
|
|
def __init__(self, max_length: int, features: int):
|
|
super().__init__()
|
|
self.max_length = max_length
|
|
self.embedding = nn.Embedding(max_length, features)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
batch_size, length, device = *x.shape[0:2], x.device
|
|
assert_message = "Input sequence length must be <= max_length"
|
|
assert length <= self.max_length, assert_message
|
|
position = torch.arange(length, device=device)
|
|
fixed_embedding = self.embedding(position)
|
|
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
|
|
return fixed_embedding
|
|
|