|
from math import atan, cos, pi, sin, sqrt
|
|
from typing import Any, Callable, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, reduce
|
|
from torch import Tensor
|
|
|
|
from .utils import *
|
|
|
|
"""
|
|
Diffusion Training
|
|
"""
|
|
|
|
""" Distributions """
|
|
|
|
|
|
class Distribution:
|
|
def __call__(self, num_samples: int, device: torch.device):
|
|
raise NotImplementedError()
|
|
|
|
|
|
class LogNormalDistribution(Distribution):
|
|
def __init__(self, mean: float, std: float):
|
|
self.mean = mean
|
|
self.std = std
|
|
|
|
def __call__(
|
|
self, num_samples: int, device: torch.device = torch.device("cpu")
|
|
) -> Tensor:
|
|
normal = self.mean + self.std * torch.randn((num_samples,), device=device)
|
|
return normal.exp()
|
|
|
|
|
|
class UniformDistribution(Distribution):
|
|
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
|
|
return torch.rand(num_samples, device=device)
|
|
|
|
|
|
class VKDistribution(Distribution):
|
|
def __init__(
|
|
self,
|
|
min_value: float = 0.0,
|
|
max_value: float = float("inf"),
|
|
sigma_data: float = 1.0,
|
|
):
|
|
self.min_value = min_value
|
|
self.max_value = max_value
|
|
self.sigma_data = sigma_data
|
|
|
|
def __call__(
|
|
self, num_samples: int, device: torch.device = torch.device("cpu")
|
|
) -> Tensor:
|
|
sigma_data = self.sigma_data
|
|
min_cdf = atan(self.min_value / sigma_data) * 2 / pi
|
|
max_cdf = atan(self.max_value / sigma_data) * 2 / pi
|
|
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
|
|
return torch.tan(u * pi / 2) * sigma_data
|
|
|
|
|
|
""" Diffusion Classes """
|
|
|
|
|
|
def pad_dims(x: Tensor, ndim: int) -> Tensor:
|
|
|
|
return x.view(*x.shape, *((1,) * ndim))
|
|
|
|
|
|
def clip(x: Tensor, dynamic_threshold: float = 0.0):
|
|
if dynamic_threshold == 0.0:
|
|
return x.clamp(-1.0, 1.0)
|
|
else:
|
|
|
|
|
|
x_flat = rearrange(x, "b ... -> b (...)")
|
|
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
|
|
|
|
scale.clamp_(min=1.0)
|
|
|
|
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
|
|
x = x.clamp(-scale, scale) / scale
|
|
return x
|
|
|
|
|
|
def to_batch(
|
|
batch_size: int,
|
|
device: torch.device,
|
|
x: Optional[float] = None,
|
|
xs: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
assert exists(x) ^ exists(xs), "Either x or xs must be provided"
|
|
|
|
if exists(x):
|
|
xs = torch.full(size=(batch_size,), fill_value=x).to(device)
|
|
assert exists(xs)
|
|
return xs
|
|
|
|
|
|
class Diffusion(nn.Module):
|
|
|
|
alias: str = ""
|
|
|
|
"""Base diffusion class"""
|
|
|
|
def denoise_fn(
|
|
self,
|
|
x_noisy: Tensor,
|
|
sigmas: Optional[Tensor] = None,
|
|
sigma: Optional[float] = None,
|
|
**kwargs,
|
|
) -> Tensor:
|
|
raise NotImplementedError("Diffusion class missing denoise_fn")
|
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
|
raise NotImplementedError("Diffusion class missing forward function")
|
|
|
|
|
|
class VDiffusion(Diffusion):
|
|
|
|
alias = "v"
|
|
|
|
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
|
super().__init__()
|
|
self.net = net
|
|
self.sigma_distribution = sigma_distribution
|
|
|
|
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
|
|
angle = sigmas * pi / 2
|
|
alpha = torch.cos(angle)
|
|
beta = torch.sin(angle)
|
|
return alpha, beta
|
|
|
|
def denoise_fn(
|
|
self,
|
|
x_noisy: Tensor,
|
|
sigmas: Optional[Tensor] = None,
|
|
sigma: Optional[float] = None,
|
|
**kwargs,
|
|
) -> Tensor:
|
|
batch_size, device = x_noisy.shape[0], x_noisy.device
|
|
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
|
return self.net(x_noisy, sigmas, **kwargs)
|
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
|
batch_size, device = x.shape[0], x.device
|
|
|
|
|
|
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
|
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x))
|
|
|
|
|
|
alpha, beta = self.get_alpha_beta(sigmas_padded)
|
|
x_noisy = x * alpha + noise * beta
|
|
x_target = noise * alpha - x * beta
|
|
|
|
|
|
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
|
|
return F.mse_loss(x_denoised, x_target)
|
|
|
|
|
|
class KDiffusion(Diffusion):
|
|
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
|
|
|
|
alias = "k"
|
|
|
|
def __init__(
|
|
self,
|
|
net: nn.Module,
|
|
*,
|
|
sigma_distribution: Distribution,
|
|
sigma_data: float,
|
|
dynamic_threshold: float = 0.0,
|
|
):
|
|
super().__init__()
|
|
self.net = net
|
|
self.sigma_data = sigma_data
|
|
self.sigma_distribution = sigma_distribution
|
|
self.dynamic_threshold = dynamic_threshold
|
|
|
|
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
|
sigma_data = self.sigma_data
|
|
c_noise = torch.log(sigmas) * 0.25
|
|
sigmas = rearrange(sigmas, "b -> b 1 1")
|
|
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
|
c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
|
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
|
return c_skip, c_out, c_in, c_noise
|
|
|
|
def denoise_fn(
|
|
self,
|
|
x_noisy: Tensor,
|
|
sigmas: Optional[Tensor] = None,
|
|
sigma: Optional[float] = None,
|
|
**kwargs,
|
|
) -> Tensor:
|
|
batch_size, device = x_noisy.shape[0], x_noisy.device
|
|
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
|
|
|
|
|
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
|
|
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
|
|
x_denoised = c_skip * x_noisy + c_out * x_pred
|
|
|
|
return x_denoised
|
|
|
|
def loss_weight(self, sigmas: Tensor) -> Tensor:
|
|
|
|
return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
|
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
|
batch_size, device = x.shape[0], x.device
|
|
from einops import rearrange, reduce
|
|
|
|
|
|
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
|
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x))
|
|
x_noisy = x + sigmas_padded * noise
|
|
|
|
|
|
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
|
|
|
|
|
|
losses = F.mse_loss(x_denoised, x, reduction="none")
|
|
losses = reduce(losses, "b ... -> b", "mean")
|
|
losses = losses * self.loss_weight(sigmas)
|
|
loss = losses.mean()
|
|
return loss
|
|
|
|
|
|
class VKDiffusion(Diffusion):
|
|
|
|
alias = "vk"
|
|
|
|
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
|
super().__init__()
|
|
self.net = net
|
|
self.sigma_distribution = sigma_distribution
|
|
|
|
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
|
sigma_data = 1.0
|
|
sigmas = rearrange(sigmas, "b -> b 1 1")
|
|
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
|
c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
|
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
|
return c_skip, c_out, c_in
|
|
|
|
def sigma_to_t(self, sigmas: Tensor) -> Tensor:
|
|
return sigmas.atan() / pi * 2
|
|
|
|
def t_to_sigma(self, t: Tensor) -> Tensor:
|
|
return (t * pi / 2).tan()
|
|
|
|
def denoise_fn(
|
|
self,
|
|
x_noisy: Tensor,
|
|
sigmas: Optional[Tensor] = None,
|
|
sigma: Optional[float] = None,
|
|
**kwargs,
|
|
) -> Tensor:
|
|
batch_size, device = x_noisy.shape[0], x_noisy.device
|
|
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
|
|
|
|
|
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
|
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
|
x_denoised = c_skip * x_noisy + c_out * x_pred
|
|
return x_denoised
|
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
|
batch_size, device = x.shape[0], x.device
|
|
|
|
|
|
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
|
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x))
|
|
x_noisy = x + sigmas_padded * noise
|
|
|
|
|
|
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
|
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
|
|
|
|
|
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
|
|
|
|
|
|
loss = F.mse_loss(x_pred, v_target)
|
|
return loss
|
|
|
|
|
|
"""
|
|
Diffusion Sampling
|
|
"""
|
|
|
|
""" Schedules """
|
|
|
|
|
|
class Schedule(nn.Module):
|
|
"""Interface used by different sampling schedules"""
|
|
|
|
def forward(self, num_steps: int, device: torch.device) -> Tensor:
|
|
raise NotImplementedError()
|
|
|
|
|
|
class LinearSchedule(Schedule):
|
|
def forward(self, num_steps: int, device: Any) -> Tensor:
|
|
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
|
|
return sigmas
|
|
|
|
|
|
class KarrasSchedule(Schedule):
|
|
"""https://arxiv.org/abs/2206.00364 equation 5"""
|
|
|
|
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
|
|
super().__init__()
|
|
self.sigma_min = sigma_min
|
|
self.sigma_max = sigma_max
|
|
self.rho = rho
|
|
|
|
def forward(self, num_steps: int, device: Any) -> Tensor:
|
|
rho_inv = 1.0 / self.rho
|
|
steps = torch.arange(num_steps, device=device, dtype=torch.float32)
|
|
sigmas = (
|
|
self.sigma_max ** rho_inv
|
|
+ (steps / (num_steps - 1))
|
|
* (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
|
|
) ** self.rho
|
|
sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
|
|
return sigmas
|
|
|
|
|
|
""" Samplers """
|
|
|
|
|
|
class Sampler(nn.Module):
|
|
|
|
diffusion_types: List[Type[Diffusion]] = []
|
|
|
|
def forward(
|
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
|
) -> Tensor:
|
|
raise NotImplementedError()
|
|
|
|
def inpaint(
|
|
self,
|
|
source: Tensor,
|
|
mask: Tensor,
|
|
fn: Callable,
|
|
sigmas: Tensor,
|
|
num_steps: int,
|
|
num_resamples: int,
|
|
) -> Tensor:
|
|
raise NotImplementedError("Inpainting not available with current sampler")
|
|
|
|
|
|
class VSampler(Sampler):
|
|
|
|
diffusion_types = [VDiffusion]
|
|
|
|
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
|
|
angle = sigma * pi / 2
|
|
alpha = cos(angle)
|
|
beta = sin(angle)
|
|
return alpha, beta
|
|
|
|
def forward(
|
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
|
) -> Tensor:
|
|
x = sigmas[0] * noise
|
|
alpha, beta = self.get_alpha_beta(sigmas[0].item())
|
|
|
|
for i in range(num_steps - 1):
|
|
is_last = i == num_steps - 1
|
|
|
|
x_denoised = fn(x, sigma=sigmas[i])
|
|
x_pred = x * alpha - x_denoised * beta
|
|
x_eps = x * beta + x_denoised * alpha
|
|
|
|
if not is_last:
|
|
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
|
|
x = x_pred * alpha + x_eps * beta
|
|
|
|
return x_pred
|
|
|
|
|
|
class KarrasSampler(Sampler):
|
|
"""https://arxiv.org/abs/2206.00364 algorithm 1"""
|
|
|
|
diffusion_types = [KDiffusion, VKDiffusion]
|
|
|
|
def __init__(
|
|
self,
|
|
s_tmin: float = 0,
|
|
s_tmax: float = float("inf"),
|
|
s_churn: float = 0.0,
|
|
s_noise: float = 1.0,
|
|
):
|
|
super().__init__()
|
|
self.s_tmin = s_tmin
|
|
self.s_tmax = s_tmax
|
|
self.s_noise = s_noise
|
|
self.s_churn = s_churn
|
|
|
|
def step(
|
|
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
|
|
) -> Tensor:
|
|
"""Algorithm 2 (step)"""
|
|
|
|
sigma_hat = sigma + gamma * sigma
|
|
|
|
epsilon = self.s_noise * torch.randn_like(x)
|
|
x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
|
|
|
|
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
|
|
|
|
x_next = x_hat + (sigma_next - sigma_hat) * d
|
|
|
|
if sigma_next != 0:
|
|
model_out_next = fn(x_next, sigma=sigma_next)
|
|
d_prime = (x_next - model_out_next) / sigma_next
|
|
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
|
|
return x_next
|
|
|
|
def forward(
|
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
|
) -> Tensor:
|
|
x = sigmas[0] * noise
|
|
|
|
gammas = torch.where(
|
|
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
|
|
min(self.s_churn / num_steps, sqrt(2) - 1),
|
|
0.0,
|
|
)
|
|
|
|
for i in range(num_steps - 1):
|
|
x = self.step(
|
|
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i]
|
|
)
|
|
|
|
return x
|
|
|
|
|
|
class AEulerSampler(Sampler):
|
|
|
|
diffusion_types = [KDiffusion, VKDiffusion]
|
|
|
|
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
|
|
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
|
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
|
return sigma_up, sigma_down
|
|
|
|
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
|
|
|
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
|
|
|
|
d = (x - fn(x, sigma=sigma)) / sigma
|
|
|
|
x_next = x + d * (sigma_down - sigma)
|
|
|
|
x_next = x_next + torch.randn_like(x) * sigma_up
|
|
return x_next
|
|
|
|
def forward(
|
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
|
) -> Tensor:
|
|
x = sigmas[0] * noise
|
|
|
|
for i in range(num_steps - 1):
|
|
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1])
|
|
return x
|
|
|
|
|
|
class ADPM2Sampler(Sampler):
|
|
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
|
|
|
|
diffusion_types = [KDiffusion, VKDiffusion]
|
|
|
|
def __init__(self, rho: float = 1.0):
|
|
super().__init__()
|
|
self.rho = rho
|
|
|
|
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
|
|
r = self.rho
|
|
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
|
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
|
sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
|
|
return sigma_up, sigma_down, sigma_mid
|
|
|
|
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
|
|
|
sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
|
|
|
|
d = (x - fn(x, sigma=sigma)) / sigma
|
|
|
|
x_mid = x + d * (sigma_mid - sigma)
|
|
|
|
d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
|
|
|
|
x = x + d_mid * (sigma_down - sigma)
|
|
|
|
x_next = x + torch.randn_like(x) * sigma_up
|
|
return x_next
|
|
|
|
def forward(
|
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
|
) -> Tensor:
|
|
x = sigmas[0] * noise
|
|
|
|
for i in range(num_steps - 1):
|
|
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1])
|
|
return x
|
|
|
|
def inpaint(
|
|
self,
|
|
source: Tensor,
|
|
mask: Tensor,
|
|
fn: Callable,
|
|
sigmas: Tensor,
|
|
num_steps: int,
|
|
num_resamples: int,
|
|
) -> Tensor:
|
|
x = sigmas[0] * torch.randn_like(source)
|
|
|
|
for i in range(num_steps - 1):
|
|
|
|
source_noisy = source + sigmas[i] * torch.randn_like(source)
|
|
for r in range(num_resamples):
|
|
|
|
x = source_noisy * mask + x * ~mask
|
|
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1])
|
|
|
|
if r < num_resamples - 1:
|
|
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
|
|
x = x + sigma * torch.randn_like(x)
|
|
|
|
return source * mask + x * ~mask
|
|
|
|
|
|
""" Main Classes """
|
|
|
|
|
|
class DiffusionSampler(nn.Module):
|
|
def __init__(
|
|
self,
|
|
diffusion: Diffusion,
|
|
*,
|
|
sampler: Sampler,
|
|
sigma_schedule: Schedule,
|
|
num_steps: Optional[int] = None,
|
|
clamp: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.denoise_fn = diffusion.denoise_fn
|
|
self.sampler = sampler
|
|
self.sigma_schedule = sigma_schedule
|
|
self.num_steps = num_steps
|
|
self.clamp = clamp
|
|
|
|
|
|
sampler_class = sampler.__class__.__name__
|
|
diffusion_class = diffusion.__class__.__name__
|
|
message = f"{sampler_class} incompatible with {diffusion_class}"
|
|
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
|
|
|
|
def forward(
|
|
self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
|
|
) -> Tensor:
|
|
device = noise.device
|
|
num_steps = default(num_steps, self.num_steps)
|
|
assert exists(num_steps), "Parameter `num_steps` must be provided"
|
|
|
|
sigmas = self.sigma_schedule(num_steps, device)
|
|
|
|
fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs})
|
|
|
|
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
|
|
x = x.clamp(-1.0, 1.0) if self.clamp else x
|
|
return x
|
|
|
|
|
|
class DiffusionInpainter(nn.Module):
|
|
def __init__(
|
|
self,
|
|
diffusion: Diffusion,
|
|
*,
|
|
num_steps: int,
|
|
num_resamples: int,
|
|
sampler: Sampler,
|
|
sigma_schedule: Schedule,
|
|
):
|
|
super().__init__()
|
|
self.denoise_fn = diffusion.denoise_fn
|
|
self.num_steps = num_steps
|
|
self.num_resamples = num_resamples
|
|
self.inpaint_fn = sampler.inpaint
|
|
self.sigma_schedule = sigma_schedule
|
|
|
|
@torch.no_grad()
|
|
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
|
|
x = self.inpaint_fn(
|
|
source=inpaint,
|
|
mask=inpaint_mask,
|
|
fn=self.denoise_fn,
|
|
sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
|
|
num_steps=self.num_steps,
|
|
num_resamples=self.num_resamples,
|
|
)
|
|
return x
|
|
|
|
|
|
def sequential_mask(like: Tensor, start: int) -> Tensor:
|
|
length, device = like.shape[2], like.device
|
|
mask = torch.ones_like(like, dtype=torch.bool)
|
|
mask[:, :, start:] = torch.zeros((length - start,), device=device)
|
|
return mask
|
|
|
|
|
|
class SpanBySpanComposer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
inpainter: DiffusionInpainter,
|
|
*,
|
|
num_spans: int,
|
|
):
|
|
super().__init__()
|
|
self.inpainter = inpainter
|
|
self.num_spans = num_spans
|
|
|
|
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
|
|
half_length = start.shape[2] // 2
|
|
|
|
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
|
|
|
|
inpaint = torch.zeros_like(start)
|
|
inpaint[:, :, :half_length] = start[:, :, half_length:]
|
|
inpaint_mask = sequential_mask(like=start, start=half_length)
|
|
|
|
for i in range(self.num_spans):
|
|
|
|
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
|
|
|
|
second_half = span[:, :, half_length:]
|
|
inpaint[:, :, :half_length] = second_half
|
|
|
|
spans.append(second_half)
|
|
|
|
return torch.cat(spans, dim=2)
|
|
|
|
|
|
class XDiffusion(nn.Module):
|
|
def __init__(self, type: str, net: nn.Module, **kwargs):
|
|
super().__init__()
|
|
|
|
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
|
|
aliases = [t.alias for t in diffusion_classes]
|
|
message = f"type='{type}' must be one of {*aliases,}"
|
|
assert type in aliases, message
|
|
self.net = net
|
|
|
|
for XDiffusion in diffusion_classes:
|
|
if XDiffusion.alias == type:
|
|
self.diffusion = XDiffusion(net=net, **kwargs)
|
|
|
|
def forward(self, *args, **kwargs) -> Tensor:
|
|
return self.diffusion(*args, **kwargs)
|
|
|
|
def sample(
|
|
self,
|
|
noise: Tensor,
|
|
num_steps: int,
|
|
sigma_schedule: Schedule,
|
|
sampler: Sampler,
|
|
clamp: bool,
|
|
**kwargs,
|
|
) -> Tensor:
|
|
diffusion_sampler = DiffusionSampler(
|
|
diffusion=self.diffusion,
|
|
sampler=sampler,
|
|
sigma_schedule=sigma_schedule,
|
|
num_steps=num_steps,
|
|
clamp=clamp,
|
|
)
|
|
return diffusion_sampler(noise, **kwargs)
|
|
|