|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
from transformers import AutoModel
|
|
|
|
|
|
class SpectralConvergengeLoss(torch.nn.Module):
|
|
"""Spectral convergence loss module."""
|
|
|
|
def __init__(self):
|
|
"""Initilize spectral convergence loss module."""
|
|
super(SpectralConvergengeLoss, self).__init__()
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
Returns:
|
|
Tensor: Spectral convergence loss value.
|
|
"""
|
|
return torch.norm(y_mag - x_mag, p=1) / torch.norm(y_mag, p=1)
|
|
|
|
|
|
class STFTLoss(torch.nn.Module):
|
|
"""STFT loss module."""
|
|
|
|
def __init__(
|
|
self, fft_size=1024, shift_size=120, win_length=600, window=torch.hann_window
|
|
):
|
|
"""Initialize STFT loss module."""
|
|
super(STFTLoss, self).__init__()
|
|
self.fft_size = fft_size
|
|
self.shift_size = shift_size
|
|
self.win_length = win_length
|
|
self.to_mel = torchaudio.transforms.MelSpectrogram(
|
|
sample_rate=24000,
|
|
n_fft=fft_size,
|
|
win_length=win_length,
|
|
hop_length=shift_size,
|
|
window_fn=window,
|
|
)
|
|
|
|
self.spectral_convergenge_loss = SpectralConvergengeLoss()
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x (Tensor): Predicted signal (B, T).
|
|
y (Tensor): Groundtruth signal (B, T).
|
|
Returns:
|
|
Tensor: Spectral convergence loss value.
|
|
Tensor: Log STFT magnitude loss value.
|
|
"""
|
|
x_mag = self.to_mel(x)
|
|
mean, std = -4, 4
|
|
x_mag = (torch.log(1e-5 + x_mag) - mean) / std
|
|
|
|
y_mag = self.to_mel(y)
|
|
mean, std = -4, 4
|
|
y_mag = (torch.log(1e-5 + y_mag) - mean) / std
|
|
|
|
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
|
|
return sc_loss
|
|
|
|
|
|
class MultiResolutionSTFTLoss(torch.nn.Module):
|
|
"""Multi resolution STFT loss module."""
|
|
|
|
def __init__(
|
|
self,
|
|
fft_sizes=[1024, 2048, 512],
|
|
hop_sizes=[120, 240, 50],
|
|
win_lengths=[600, 1200, 240],
|
|
window=torch.hann_window,
|
|
):
|
|
"""Initialize Multi resolution STFT loss module.
|
|
Args:
|
|
fft_sizes (list): List of FFT sizes.
|
|
hop_sizes (list): List of hop sizes.
|
|
win_lengths (list): List of window lengths.
|
|
window (str): Window function type.
|
|
"""
|
|
super(MultiResolutionSTFTLoss, self).__init__()
|
|
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
|
self.stft_losses = torch.nn.ModuleList()
|
|
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
|
self.stft_losses += [STFTLoss(fs, ss, wl, window)]
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x (Tensor): Predicted signal (B, T).
|
|
y (Tensor): Groundtruth signal (B, T).
|
|
Returns:
|
|
Tensor: Multi resolution spectral convergence loss value.
|
|
Tensor: Multi resolution log STFT magnitude loss value.
|
|
"""
|
|
sc_loss = 0.0
|
|
for f in self.stft_losses:
|
|
sc_l = f(x, y)
|
|
sc_loss += sc_l
|
|
sc_loss /= len(self.stft_losses)
|
|
|
|
return sc_loss
|
|
|
|
|
|
def feature_loss(fmap_r, fmap_g):
|
|
loss = 0
|
|
for dr, dg in zip(fmap_r, fmap_g):
|
|
for rl, gl in zip(dr, dg):
|
|
loss += torch.mean(torch.abs(rl - gl))
|
|
|
|
return loss * 2
|
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
|
loss = 0
|
|
r_losses = []
|
|
g_losses = []
|
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
|
r_loss = torch.mean((1 - dr) ** 2)
|
|
g_loss = torch.mean(dg**2)
|
|
loss += r_loss + g_loss
|
|
r_losses.append(r_loss.item())
|
|
g_losses.append(g_loss.item())
|
|
|
|
return loss, r_losses, g_losses
|
|
|
|
|
|
def generator_loss(disc_outputs):
|
|
loss = 0
|
|
gen_losses = []
|
|
for dg in disc_outputs:
|
|
l = torch.mean((1 - dg) ** 2)
|
|
gen_losses.append(l)
|
|
loss += l
|
|
|
|
return loss, gen_losses
|
|
|
|
|
|
""" https://dl.acm.org/doi/abs/10.1145/3573834.3574506 """
|
|
|
|
|
|
def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
|
|
loss = 0
|
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
|
tau = 0.04
|
|
m_DG = torch.median((dr - dg))
|
|
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
|
loss += tau - F.relu(tau - L_rel)
|
|
return loss
|
|
|
|
|
|
def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
|
|
loss = 0
|
|
for dg, dr in zip(disc_real_outputs, disc_generated_outputs):
|
|
tau = 0.04
|
|
m_DG = torch.median((dr - dg))
|
|
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
|
loss += tau - F.relu(tau - L_rel)
|
|
return loss
|
|
|
|
|
|
class GeneratorLoss(torch.nn.Module):
|
|
def __init__(self, mpd, msd):
|
|
super(GeneratorLoss, self).__init__()
|
|
self.mpd = mpd
|
|
self.msd = msd
|
|
|
|
def forward(self, y, y_hat):
|
|
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = self.mpd(y, y_hat)
|
|
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = self.msd(y, y_hat)
|
|
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
|
|
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
|
|
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
|
|
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
|
|
|
|
loss_rel = generator_TPRLS_loss(y_df_hat_r, y_df_hat_g) + generator_TPRLS_loss(
|
|
y_ds_hat_r, y_ds_hat_g
|
|
)
|
|
|
|
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_rel
|
|
|
|
return loss_gen_all.mean()
|
|
|
|
|
|
class DiscriminatorLoss(torch.nn.Module):
|
|
def __init__(self, mpd, msd):
|
|
super(DiscriminatorLoss, self).__init__()
|
|
self.mpd = mpd
|
|
self.msd = msd
|
|
|
|
def forward(self, y, y_hat):
|
|
|
|
y_df_hat_r, y_df_hat_g, _, _ = self.mpd(y, y_hat)
|
|
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
|
|
y_df_hat_r, y_df_hat_g
|
|
)
|
|
|
|
y_ds_hat_r, y_ds_hat_g, _, _ = self.msd(y, y_hat)
|
|
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
|
|
y_ds_hat_r, y_ds_hat_g
|
|
)
|
|
|
|
loss_rel = discriminator_TPRLS_loss(
|
|
y_df_hat_r, y_df_hat_g
|
|
) + discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
|
|
|
|
d_loss = loss_disc_s + loss_disc_f + loss_rel
|
|
|
|
return d_loss.mean()
|
|
|
|
|
|
class WavLMLoss(torch.nn.Module):
|
|
def __init__(self, model, wd, model_sr, slm_sr=16000):
|
|
super(WavLMLoss, self).__init__()
|
|
self.wavlm = AutoModel.from_pretrained(model)
|
|
self.wd = wd
|
|
self.resample = torchaudio.transforms.Resample(model_sr, slm_sr)
|
|
|
|
def forward(self, wav, y_rec):
|
|
with torch.no_grad():
|
|
wav_16 = self.resample(wav)
|
|
wav_embeddings = self.wavlm(
|
|
input_values=wav_16, output_hidden_states=True
|
|
).hidden_states
|
|
y_rec_16 = self.resample(y_rec)
|
|
y_rec_embeddings = self.wavlm(
|
|
input_values=y_rec_16.squeeze(), output_hidden_states=True
|
|
).hidden_states
|
|
|
|
floss = 0
|
|
for er, eg in zip(wav_embeddings, y_rec_embeddings):
|
|
floss += torch.mean(torch.abs(er - eg))
|
|
|
|
return floss.mean()
|
|
|
|
def generator(self, y_rec):
|
|
y_rec_16 = self.resample(y_rec)
|
|
y_rec_embeddings = self.wavlm(
|
|
input_values=y_rec_16, output_hidden_states=True
|
|
).hidden_states
|
|
y_rec_embeddings = (
|
|
torch.stack(y_rec_embeddings, dim=1)
|
|
.transpose(-1, -2)
|
|
.flatten(start_dim=1, end_dim=2)
|
|
)
|
|
y_df_hat_g = self.wd(y_rec_embeddings)
|
|
loss_gen = torch.mean((1 - y_df_hat_g) ** 2)
|
|
|
|
return loss_gen
|
|
|
|
def discriminator(self, wav, y_rec):
|
|
with torch.no_grad():
|
|
wav_16 = self.resample(wav)
|
|
wav_embeddings = self.wavlm(
|
|
input_values=wav_16, output_hidden_states=True
|
|
).hidden_states
|
|
y_rec_16 = self.resample(y_rec)
|
|
y_rec_embeddings = self.wavlm(
|
|
input_values=y_rec_16, output_hidden_states=True
|
|
).hidden_states
|
|
|
|
y_embeddings = (
|
|
torch.stack(wav_embeddings, dim=1)
|
|
.transpose(-1, -2)
|
|
.flatten(start_dim=1, end_dim=2)
|
|
)
|
|
y_rec_embeddings = (
|
|
torch.stack(y_rec_embeddings, dim=1)
|
|
.transpose(-1, -2)
|
|
.flatten(start_dim=1, end_dim=2)
|
|
)
|
|
|
|
y_d_rs = self.wd(y_embeddings)
|
|
y_d_gs = self.wd(y_rec_embeddings)
|
|
|
|
y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs
|
|
|
|
r_loss = torch.mean((1 - y_df_hat_r) ** 2)
|
|
g_loss = torch.mean((y_df_hat_g) ** 2)
|
|
|
|
loss_disc_f = r_loss + g_loss
|
|
|
|
return loss_disc_f.mean()
|
|
|
|
def discriminator_forward(self, wav):
|
|
with torch.no_grad():
|
|
wav_16 = self.resample(wav)
|
|
wav_embeddings = self.wavlm(
|
|
input_values=wav_16, output_hidden_states=True
|
|
).hidden_states
|
|
y_embeddings = (
|
|
torch.stack(wav_embeddings, dim=1)
|
|
.transpose(-1, -2)
|
|
.flatten(start_dim=1, end_dim=2)
|
|
)
|
|
|
|
y_d_rs = self.wd(y_embeddings)
|
|
|
|
return y_d_rs
|
|
|