azdin commited on
Commit
c785036
·
verified ·
1 Parent(s): c783c18

Upload LLaVA-OneVision weather satellite AdaLoRA adapter

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +11 -0
  2. README.md +62 -0
  3. adapter_config.json +38 -0
  4. adapter_model.safetensors +3 -0
  5. added_tokens.json +7 -0
  6. chat_template.jinja +6 -0
  7. checkpoint-120/README.md +209 -0
  8. checkpoint-120/adapter_config.json +38 -0
  9. checkpoint-120/adapter_model.safetensors +3 -0
  10. checkpoint-120/added_tokens.json +7 -0
  11. checkpoint-120/chat_template.jinja +6 -0
  12. checkpoint-120/merges.txt +0 -0
  13. checkpoint-120/optimizer.pt +3 -0
  14. checkpoint-120/rng_state.pth +3 -0
  15. checkpoint-120/scheduler.pt +3 -0
  16. checkpoint-120/special_tokens_map.json +20 -0
  17. checkpoint-120/tokenizer.json +3 -0
  18. checkpoint-120/tokenizer_config.json +64 -0
  19. checkpoint-120/trainer_state.json +202 -0
  20. checkpoint-120/training_args.bin +3 -0
  21. checkpoint-120/vocab.json +0 -0
  22. checkpoint-160/README.md +209 -0
  23. checkpoint-160/adapter_config.json +38 -0
  24. checkpoint-160/adapter_model.safetensors +3 -0
  25. checkpoint-160/added_tokens.json +7 -0
  26. checkpoint-160/chat_template.jinja +6 -0
  27. checkpoint-160/merges.txt +0 -0
  28. checkpoint-160/optimizer.pt +3 -0
  29. checkpoint-160/rng_state.pth +3 -0
  30. checkpoint-160/scheduler.pt +3 -0
  31. checkpoint-160/special_tokens_map.json +20 -0
  32. checkpoint-160/tokenizer.json +3 -0
  33. checkpoint-160/tokenizer_config.json +64 -0
  34. checkpoint-160/trainer_state.json +258 -0
  35. checkpoint-160/training_args.bin +3 -0
  36. checkpoint-160/vocab.json +0 -0
  37. checkpoint-200/README.md +209 -0
  38. checkpoint-200/adapter_config.json +38 -0
  39. checkpoint-200/adapter_model.safetensors +3 -0
  40. checkpoint-200/added_tokens.json +7 -0
  41. checkpoint-200/chat_template.jinja +6 -0
  42. checkpoint-200/merges.txt +0 -0
  43. checkpoint-200/optimizer.pt +3 -0
  44. checkpoint-200/rng_state.pth +3 -0
  45. checkpoint-200/scheduler.pt +3 -0
  46. checkpoint-200/special_tokens_map.json +20 -0
  47. checkpoint-200/tokenizer.json +3 -0
  48. checkpoint-200/tokenizer_config.json +64 -0
  49. checkpoint-200/trainer_state.json +314 -0
  50. checkpoint-200/training_args.bin +3 -0
.gitattributes CHANGED
@@ -33,3 +33,14 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-120/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-240/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-280/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ checkpoint-320/tokenizer.json filter=lfs diff=lfs merge=lfs -text
42
+ checkpoint-360/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ checkpoint-392/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
+ checkpoint-40/tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ checkpoint-80/tokenizer.json filter=lfs diff=lfs merge=lfs -text
46
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
3
+ library_name: peft
4
+ model_name: llava_adalora_weather_model
5
+ tags:
6
+ - base_model:adapter:llava-hf/llava-onevision-qwen2-7b-ov-hf
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ licence: license
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # Model Card for llava_adalora_weather_model
16
+
17
+ This model is a fine-tuned version of [llava-hf/llava-onevision-qwen2-7b-ov-hf](https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf).
18
+ It has been trained using [TRL](https://github.com/huggingface/trl).
19
+
20
+ ## Quick start
21
+
22
+ ```python
23
+ from transformers import pipeline
24
+
25
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
26
+ generator = pipeline("text-generation", model="None", device="cuda")
27
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
28
+ print(output["generated_text"])
29
+ ```
30
+
31
+ ## Training procedure
32
+
33
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/azdinsahir11-university-mohamed-v/llava-onevision-adalora-weather/runs/m8m1fc1p)
34
+
35
+
36
+ This model was trained with SFT.
37
+
38
+ ### Framework versions
39
+
40
+ - PEFT 0.16.0
41
+ - TRL: 0.19.1
42
+ - Transformers: 4.53.3
43
+ - Pytorch: 2.6.0+cu124
44
+ - Datasets: 4.0.0
45
+ - Tokenizers: 0.21.2
46
+
47
+ ## Citations
48
+
49
+
50
+
51
+ Cite TRL as:
52
+
53
+ ```bibtex
54
+ @misc{vonwerra2022trl,
55
+ title = {{TRL: Transformer Reinforcement Learning}},
56
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
57
+ year = 2020,
58
+ journal = {GitHub repository},
59
+ publisher = {GitHub},
60
+ howpublished = {\url{https://github.com/huggingface/trl}}
61
+ }
62
+ ```
adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/llava-onevision-qwen2-7b-ov-hf",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 24,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 12,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj",
30
+ "o_proj",
31
+ "k_proj"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_qalora": false,
37
+ "use_rslora": false
38
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8da2dcff2f87ae9076f1d4e58d793438cadcf2dd8ed88a111f7e65eabd1b4ca8
3
+ size 38963456
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151646,
3
+ "<video>": 151647,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644
7
+ }
chat_template.jinja ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ ' }}{% endif %}{{'<|im_start|>' + message['role'] + '
4
+ ' + message['content'] + '<|im_end|>' + '
5
+ '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
6
+ ' }}{% endif %}
checkpoint-120/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:llava-hf/llava-onevision-qwen2-7b-ov-hf
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.16.0
checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/llava-onevision-qwen2-7b-ov-hf",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 24,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 12,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj",
30
+ "o_proj",
31
+ "k_proj"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_qalora": false,
37
+ "use_rslora": false
38
+ }
checkpoint-120/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6fc447c381e3ce4d3b2968c9b75cf6fa45a5762a815cd7785e020b0c64fc676
3
+ size 38963456
checkpoint-120/added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151646,
3
+ "<video>": 151647,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644
7
+ }
checkpoint-120/chat_template.jinja ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ ' }}{% endif %}{{'<|im_start|>' + message['role'] + '
4
+ ' + message['content'] + '<|im_end|>' + '
5
+ '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
6
+ ' }}{% endif %}
checkpoint-120/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-120/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08fdcf2f84ca67d8f54e649d2bae932f91f1124a76555bc9aedfe5992fb8ad1a
3
+ size 78126726
checkpoint-120/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74c3b4908440fbf2ecbdd495cd2dac383cc2b9bfde82fdc9a566927e28f3892a
3
+ size 14244
checkpoint-120/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fade00f111acdd833f7b0d851d6af49db2dd6691910453c9ee7b286f7574ebc4
3
+ size 1064
checkpoint-120/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-120/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22acdce2f613a63fdd5803fbf73706de47621ed05578ba2553482f4d59a3d611
3
+ size 11418802
checkpoint-120/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<image>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<video>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "additional_special_tokens": [
46
+ "<|im_start|>",
47
+ "<|im_end|>"
48
+ ],
49
+ "bos_token": null,
50
+ "clean_up_tokenization_spaces": false,
51
+ "eos_token": "<|im_end|>",
52
+ "errors": "replace",
53
+ "extra_special_tokens": {},
54
+ "max_length": null,
55
+ "model_max_length": 131072,
56
+ "pad_to_multiple_of": null,
57
+ "pad_token": "<|endoftext|>",
58
+ "pad_token_type_id": 0,
59
+ "padding_side": "right",
60
+ "processor_class": "LlavaOnevisionProcessor",
61
+ "split_special_tokens": false,
62
+ "tokenizer_class": "Qwen2Tokenizer",
63
+ "unk_token": null
64
+ }
checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 120,
3
+ "best_metric": 0.2247939258813858,
4
+ "best_model_checkpoint": "./llava_adalora_weather_model/checkpoint-120",
5
+ "epoch": 1.2262210796915167,
6
+ "eval_steps": 20,
7
+ "global_step": 120,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.10282776349614396,
14
+ "grad_norm": 0.5032290816307068,
15
+ "learning_rate": 6.75e-05,
16
+ "loss": 2.3108,
17
+ "mean_token_accuracy": 0.5181779790669679,
18
+ "num_tokens": 645254.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.20565552699228792,
23
+ "grad_norm": 0.5140016078948975,
24
+ "learning_rate": 0.0001425,
25
+ "loss": 1.9876,
26
+ "mean_token_accuracy": 0.5564090937376023,
27
+ "num_tokens": 1290816.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.20565552699228792,
32
+ "eval_loss": 1.6786144971847534,
33
+ "eval_mean_token_accuracy": 0.5918497213950524,
34
+ "eval_num_tokens": 1290816.0,
35
+ "eval_runtime": 199.77,
36
+ "eval_samples_per_second": 0.976,
37
+ "eval_steps_per_second": 0.976,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.30848329048843187,
42
+ "grad_norm": 1.200245976448059,
43
+ "learning_rate": 0.00021749999999999997,
44
+ "loss": 1.2898,
45
+ "mean_token_accuracy": 0.6574281774461269,
46
+ "num_tokens": 1936067.0,
47
+ "step": 30
48
+ },
49
+ {
50
+ "epoch": 0.41131105398457585,
51
+ "grad_norm": 0.3560621440410614,
52
+ "learning_rate": 0.00029249999999999995,
53
+ "loss": 0.5269,
54
+ "mean_token_accuracy": 0.8504049643874169,
55
+ "num_tokens": 2581570.0,
56
+ "step": 40
57
+ },
58
+ {
59
+ "epoch": 0.41131105398457585,
60
+ "eval_loss": 0.3815372884273529,
61
+ "eval_mean_token_accuracy": 0.8895098340816987,
62
+ "eval_num_tokens": 2581570.0,
63
+ "eval_runtime": 199.91,
64
+ "eval_samples_per_second": 0.975,
65
+ "eval_steps_per_second": 0.975,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.5141388174807198,
70
+ "grad_norm": 0.36290714144706726,
71
+ "learning_rate": 0.0002995163544683256,
72
+ "loss": 0.3431,
73
+ "mean_token_accuracy": 0.8966262958943844,
74
+ "num_tokens": 3226740.0,
75
+ "step": 50
76
+ },
77
+ {
78
+ "epoch": 0.6169665809768637,
79
+ "grad_norm": 0.3132888674736023,
80
+ "learning_rate": 0.00029784849709745616,
81
+ "loss": 0.3131,
82
+ "mean_token_accuracy": 0.9030718393623829,
83
+ "num_tokens": 3872000.0,
84
+ "step": 60
85
+ },
86
+ {
87
+ "epoch": 0.6169665809768637,
88
+ "eval_loss": 0.2877984046936035,
89
+ "eval_mean_token_accuracy": 0.9094783853261899,
90
+ "eval_num_tokens": 3872000.0,
91
+ "eval_runtime": 200.0291,
92
+ "eval_samples_per_second": 0.975,
93
+ "eval_steps_per_second": 0.975,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.7197943444730077,
98
+ "grad_norm": 0.3172520697116852,
99
+ "learning_rate": 0.0002950037303267096,
100
+ "loss": 0.2776,
101
+ "mean_token_accuracy": 0.9121568284928798,
102
+ "num_tokens": 4517650.0,
103
+ "step": 70
104
+ },
105
+ {
106
+ "epoch": 0.8226221079691517,
107
+ "grad_norm": 0.2681174576282501,
108
+ "learning_rate": 0.0002910046991800035,
109
+ "loss": 0.2463,
110
+ "mean_token_accuracy": 0.9197294652462006,
111
+ "num_tokens": 5162524.0,
112
+ "step": 80
113
+ },
114
+ {
115
+ "epoch": 0.8226221079691517,
116
+ "eval_loss": 0.24699676036834717,
117
+ "eval_mean_token_accuracy": 0.918833449559334,
118
+ "eval_num_tokens": 5162524.0,
119
+ "eval_runtime": 199.9764,
120
+ "eval_samples_per_second": 0.975,
121
+ "eval_steps_per_second": 0.975,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.9254498714652957,
126
+ "grad_norm": 0.25532031059265137,
127
+ "learning_rate": 0.00028588323690176954,
128
+ "loss": 0.2409,
129
+ "mean_token_accuracy": 0.9201722621917725,
130
+ "num_tokens": 5808159.0,
131
+ "step": 90
132
+ },
133
+ {
134
+ "epoch": 1.0205655526992288,
135
+ "grad_norm": 0.2883255183696747,
136
+ "learning_rate": 0.0002796801115567139,
137
+ "loss": 0.229,
138
+ "mean_token_accuracy": 0.9240316643908217,
139
+ "num_tokens": 6405024.0,
140
+ "step": 100
141
+ },
142
+ {
143
+ "epoch": 1.0205655526992288,
144
+ "eval_loss": 0.2340758889913559,
145
+ "eval_mean_token_accuracy": 0.9224844058354695,
146
+ "eval_num_tokens": 6405024.0,
147
+ "eval_runtime": 199.917,
148
+ "eval_samples_per_second": 0.975,
149
+ "eval_steps_per_second": 0.975,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 1.1233933161953726,
154
+ "grad_norm": 0.30399489402770996,
155
+ "learning_rate": 0.0002724447015062708,
156
+ "loss": 0.2179,
157
+ "mean_token_accuracy": 0.927613090723753,
158
+ "num_tokens": 7050233.0,
159
+ "step": 110
160
+ },
161
+ {
162
+ "epoch": 1.2262210796915167,
163
+ "grad_norm": 0.28451991081237793,
164
+ "learning_rate": 0.0002642346023450357,
165
+ "loss": 0.216,
166
+ "mean_token_accuracy": 0.9265601448714733,
167
+ "num_tokens": 7695653.0,
168
+ "step": 120
169
+ },
170
+ {
171
+ "epoch": 1.2262210796915167,
172
+ "eval_loss": 0.2247939258813858,
173
+ "eval_mean_token_accuracy": 0.925137395125169,
174
+ "eval_num_tokens": 7695653.0,
175
+ "eval_runtime": 199.5418,
176
+ "eval_samples_per_second": 0.977,
177
+ "eval_steps_per_second": 0.977,
178
+ "step": 120
179
+ }
180
+ ],
181
+ "logging_steps": 10,
182
+ "max_steps": 392,
183
+ "num_input_tokens_seen": 0,
184
+ "num_train_epochs": 4,
185
+ "save_steps": 40,
186
+ "stateful_callbacks": {
187
+ "TrainerControl": {
188
+ "args": {
189
+ "should_epoch_stop": false,
190
+ "should_evaluate": false,
191
+ "should_log": false,
192
+ "should_save": true,
193
+ "should_training_stop": false
194
+ },
195
+ "attributes": {}
196
+ }
197
+ },
198
+ "total_flos": 3.4604890360353197e+17,
199
+ "train_batch_size": 1,
200
+ "trial_name": null,
201
+ "trial_params": null
202
+ }
checkpoint-120/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4ee18fc7fc6461abdc27ef50b94a39880806ee3c787211adab9a8a0c2d2ed0c
3
+ size 5816
checkpoint-120/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-160/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:llava-hf/llava-onevision-qwen2-7b-ov-hf
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.16.0
checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/llava-onevision-qwen2-7b-ov-hf",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 24,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 12,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj",
30
+ "o_proj",
31
+ "k_proj"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_qalora": false,
37
+ "use_rslora": false
38
+ }
checkpoint-160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3bd2e6fcec92a0413bb0b0ae69eb661fd89d444815d2757934c8494a50d3a5
3
+ size 38963456
checkpoint-160/added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151646,
3
+ "<video>": 151647,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644
7
+ }
checkpoint-160/chat_template.jinja ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ ' }}{% endif %}{{'<|im_start|>' + message['role'] + '
4
+ ' + message['content'] + '<|im_end|>' + '
5
+ '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
6
+ ' }}{% endif %}
checkpoint-160/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-160/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b2eb742e96a127f01686548229ac91cec39d4e96962ce02d1a300dc23c1a88
3
+ size 78126726
checkpoint-160/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1363ed0cee96992d997af407c2663ebdbfbaded8d2e82aab54e259ec142bde37
3
+ size 14244
checkpoint-160/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4078e2a7c02601d5e0eeb618902a971f3d69ca4bff8d896454ff2d0d00f255c8
3
+ size 1064
checkpoint-160/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-160/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22acdce2f613a63fdd5803fbf73706de47621ed05578ba2553482f4d59a3d611
3
+ size 11418802
checkpoint-160/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<image>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<video>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "additional_special_tokens": [
46
+ "<|im_start|>",
47
+ "<|im_end|>"
48
+ ],
49
+ "bos_token": null,
50
+ "clean_up_tokenization_spaces": false,
51
+ "eos_token": "<|im_end|>",
52
+ "errors": "replace",
53
+ "extra_special_tokens": {},
54
+ "max_length": null,
55
+ "model_max_length": 131072,
56
+ "pad_to_multiple_of": null,
57
+ "pad_token": "<|endoftext|>",
58
+ "pad_token_type_id": 0,
59
+ "padding_side": "right",
60
+ "processor_class": "LlavaOnevisionProcessor",
61
+ "split_special_tokens": false,
62
+ "tokenizer_class": "Qwen2Tokenizer",
63
+ "unk_token": null
64
+ }
checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 160,
3
+ "best_metric": 0.21295307576656342,
4
+ "best_model_checkpoint": "./llava_adalora_weather_model/checkpoint-160",
5
+ "epoch": 1.6375321336760926,
6
+ "eval_steps": 20,
7
+ "global_step": 160,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.10282776349614396,
14
+ "grad_norm": 0.5032290816307068,
15
+ "learning_rate": 6.75e-05,
16
+ "loss": 2.3108,
17
+ "mean_token_accuracy": 0.5181779790669679,
18
+ "num_tokens": 645254.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.20565552699228792,
23
+ "grad_norm": 0.5140016078948975,
24
+ "learning_rate": 0.0001425,
25
+ "loss": 1.9876,
26
+ "mean_token_accuracy": 0.5564090937376023,
27
+ "num_tokens": 1290816.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.20565552699228792,
32
+ "eval_loss": 1.6786144971847534,
33
+ "eval_mean_token_accuracy": 0.5918497213950524,
34
+ "eval_num_tokens": 1290816.0,
35
+ "eval_runtime": 199.77,
36
+ "eval_samples_per_second": 0.976,
37
+ "eval_steps_per_second": 0.976,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.30848329048843187,
42
+ "grad_norm": 1.200245976448059,
43
+ "learning_rate": 0.00021749999999999997,
44
+ "loss": 1.2898,
45
+ "mean_token_accuracy": 0.6574281774461269,
46
+ "num_tokens": 1936067.0,
47
+ "step": 30
48
+ },
49
+ {
50
+ "epoch": 0.41131105398457585,
51
+ "grad_norm": 0.3560621440410614,
52
+ "learning_rate": 0.00029249999999999995,
53
+ "loss": 0.5269,
54
+ "mean_token_accuracy": 0.8504049643874169,
55
+ "num_tokens": 2581570.0,
56
+ "step": 40
57
+ },
58
+ {
59
+ "epoch": 0.41131105398457585,
60
+ "eval_loss": 0.3815372884273529,
61
+ "eval_mean_token_accuracy": 0.8895098340816987,
62
+ "eval_num_tokens": 2581570.0,
63
+ "eval_runtime": 199.91,
64
+ "eval_samples_per_second": 0.975,
65
+ "eval_steps_per_second": 0.975,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.5141388174807198,
70
+ "grad_norm": 0.36290714144706726,
71
+ "learning_rate": 0.0002995163544683256,
72
+ "loss": 0.3431,
73
+ "mean_token_accuracy": 0.8966262958943844,
74
+ "num_tokens": 3226740.0,
75
+ "step": 50
76
+ },
77
+ {
78
+ "epoch": 0.6169665809768637,
79
+ "grad_norm": 0.3132888674736023,
80
+ "learning_rate": 0.00029784849709745616,
81
+ "loss": 0.3131,
82
+ "mean_token_accuracy": 0.9030718393623829,
83
+ "num_tokens": 3872000.0,
84
+ "step": 60
85
+ },
86
+ {
87
+ "epoch": 0.6169665809768637,
88
+ "eval_loss": 0.2877984046936035,
89
+ "eval_mean_token_accuracy": 0.9094783853261899,
90
+ "eval_num_tokens": 3872000.0,
91
+ "eval_runtime": 200.0291,
92
+ "eval_samples_per_second": 0.975,
93
+ "eval_steps_per_second": 0.975,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.7197943444730077,
98
+ "grad_norm": 0.3172520697116852,
99
+ "learning_rate": 0.0002950037303267096,
100
+ "loss": 0.2776,
101
+ "mean_token_accuracy": 0.9121568284928798,
102
+ "num_tokens": 4517650.0,
103
+ "step": 70
104
+ },
105
+ {
106
+ "epoch": 0.8226221079691517,
107
+ "grad_norm": 0.2681174576282501,
108
+ "learning_rate": 0.0002910046991800035,
109
+ "loss": 0.2463,
110
+ "mean_token_accuracy": 0.9197294652462006,
111
+ "num_tokens": 5162524.0,
112
+ "step": 80
113
+ },
114
+ {
115
+ "epoch": 0.8226221079691517,
116
+ "eval_loss": 0.24699676036834717,
117
+ "eval_mean_token_accuracy": 0.918833449559334,
118
+ "eval_num_tokens": 5162524.0,
119
+ "eval_runtime": 199.9764,
120
+ "eval_samples_per_second": 0.975,
121
+ "eval_steps_per_second": 0.975,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.9254498714652957,
126
+ "grad_norm": 0.25532031059265137,
127
+ "learning_rate": 0.00028588323690176954,
128
+ "loss": 0.2409,
129
+ "mean_token_accuracy": 0.9201722621917725,
130
+ "num_tokens": 5808159.0,
131
+ "step": 90
132
+ },
133
+ {
134
+ "epoch": 1.0205655526992288,
135
+ "grad_norm": 0.2883255183696747,
136
+ "learning_rate": 0.0002796801115567139,
137
+ "loss": 0.229,
138
+ "mean_token_accuracy": 0.9240316643908217,
139
+ "num_tokens": 6405024.0,
140
+ "step": 100
141
+ },
142
+ {
143
+ "epoch": 1.0205655526992288,
144
+ "eval_loss": 0.2340758889913559,
145
+ "eval_mean_token_accuracy": 0.9224844058354695,
146
+ "eval_num_tokens": 6405024.0,
147
+ "eval_runtime": 199.917,
148
+ "eval_samples_per_second": 0.975,
149
+ "eval_steps_per_second": 0.975,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 1.1233933161953726,
154
+ "grad_norm": 0.30399489402770996,
155
+ "learning_rate": 0.0002724447015062708,
156
+ "loss": 0.2179,
157
+ "mean_token_accuracy": 0.927613090723753,
158
+ "num_tokens": 7050233.0,
159
+ "step": 110
160
+ },
161
+ {
162
+ "epoch": 1.2262210796915167,
163
+ "grad_norm": 0.28451991081237793,
164
+ "learning_rate": 0.0002642346023450357,
165
+ "loss": 0.216,
166
+ "mean_token_accuracy": 0.9265601448714733,
167
+ "num_tokens": 7695653.0,
168
+ "step": 120
169
+ },
170
+ {
171
+ "epoch": 1.2262210796915167,
172
+ "eval_loss": 0.2247939258813858,
173
+ "eval_mean_token_accuracy": 0.925137395125169,
174
+ "eval_num_tokens": 7695653.0,
175
+ "eval_runtime": 199.5418,
176
+ "eval_samples_per_second": 0.977,
177
+ "eval_steps_per_second": 0.977,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 1.3290488431876606,
182
+ "grad_norm": 0.28032347559928894,
183
+ "learning_rate": 0.0002551151684260553,
184
+ "loss": 0.2093,
185
+ "mean_token_accuracy": 0.9289478570222854,
186
+ "num_tokens": 8341317.0,
187
+ "step": 130
188
+ },
189
+ {
190
+ "epoch": 1.4318766066838047,
191
+ "grad_norm": 0.3006415367126465,
192
+ "learning_rate": 0.0002451589926245468,
193
+ "loss": 0.2017,
194
+ "mean_token_accuracy": 0.930090955644846,
195
+ "num_tokens": 8986431.0,
196
+ "step": 140
197
+ },
198
+ {
199
+ "epoch": 1.4318766066838047,
200
+ "eval_loss": 0.22003041207790375,
201
+ "eval_mean_token_accuracy": 0.9265705820841666,
202
+ "eval_num_tokens": 8986431.0,
203
+ "eval_runtime": 199.7226,
204
+ "eval_samples_per_second": 0.976,
205
+ "eval_steps_per_second": 0.976,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 1.5347043701799485,
210
+ "grad_norm": 0.27291589975357056,
211
+ "learning_rate": 0.00023444532848124715,
212
+ "loss": 0.2008,
213
+ "mean_token_accuracy": 0.9297313310205937,
214
+ "num_tokens": 9631882.0,
215
+ "step": 150
216
+ },
217
+ {
218
+ "epoch": 1.6375321336760926,
219
+ "grad_norm": 0.2605527639389038,
220
+ "learning_rate": 0.00022305945932527308,
221
+ "loss": 0.2019,
222
+ "mean_token_accuracy": 0.9302895963191986,
223
+ "num_tokens": 10277533.0,
224
+ "step": 160
225
+ },
226
+ {
227
+ "epoch": 1.6375321336760926,
228
+ "eval_loss": 0.21295307576656342,
229
+ "eval_mean_token_accuracy": 0.9283858265632238,
230
+ "eval_num_tokens": 10277533.0,
231
+ "eval_runtime": 199.8041,
232
+ "eval_samples_per_second": 0.976,
233
+ "eval_steps_per_second": 0.976,
234
+ "step": 160
235
+ }
236
+ ],
237
+ "logging_steps": 10,
238
+ "max_steps": 392,
239
+ "num_input_tokens_seen": 0,
240
+ "num_train_epochs": 4,
241
+ "save_steps": 40,
242
+ "stateful_callbacks": {
243
+ "TrainerControl": {
244
+ "args": {
245
+ "should_epoch_stop": false,
246
+ "should_evaluate": false,
247
+ "should_log": false,
248
+ "should_save": true,
249
+ "should_training_stop": false
250
+ },
251
+ "attributes": {}
252
+ }
253
+ },
254
+ "total_flos": 4.6214778997950125e+17,
255
+ "train_batch_size": 1,
256
+ "trial_name": null,
257
+ "trial_params": null
258
+ }
checkpoint-160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4ee18fc7fc6461abdc27ef50b94a39880806ee3c787211adab9a8a0c2d2ed0c
3
+ size 5816
checkpoint-160/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-200/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:llava-hf/llava-onevision-qwen2-7b-ov-hf
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.16.0
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/llava-onevision-qwen2-7b-ov-hf",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 24,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 12,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj",
30
+ "o_proj",
31
+ "k_proj"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_qalora": false,
37
+ "use_rslora": false
38
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c0a86e48c68c28953bc3d111de3cef10fdbcc8e0d4bd8436ee4d800034aa58f
3
+ size 38963456
checkpoint-200/added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151646,
3
+ "<video>": 151647,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644
7
+ }
checkpoint-200/chat_template.jinja ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ ' }}{% endif %}{{'<|im_start|>' + message['role'] + '
4
+ ' + message['content'] + '<|im_end|>' + '
5
+ '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
6
+ ' }}{% endif %}
checkpoint-200/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:886468e8b3d249d16598096b819c91ce8e3e2ba88c26de3c3bee879d9e39e6a3
3
+ size 78126726
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b039ba5878e493b5725ddd19920f58db431c5db2862e3c050886795fabb06b1
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:466a3e032ea2a04b4fd1ef71f9841bdf4f29fc0770db16c430c9234351b79982
3
+ size 1064
checkpoint-200/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-200/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22acdce2f613a63fdd5803fbf73706de47621ed05578ba2553482f4d59a3d611
3
+ size 11418802
checkpoint-200/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<image>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<video>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "additional_special_tokens": [
46
+ "<|im_start|>",
47
+ "<|im_end|>"
48
+ ],
49
+ "bos_token": null,
50
+ "clean_up_tokenization_spaces": false,
51
+ "eos_token": "<|im_end|>",
52
+ "errors": "replace",
53
+ "extra_special_tokens": {},
54
+ "max_length": null,
55
+ "model_max_length": 131072,
56
+ "pad_to_multiple_of": null,
57
+ "pad_token": "<|endoftext|>",
58
+ "pad_token_type_id": 0,
59
+ "padding_side": "right",
60
+ "processor_class": "LlavaOnevisionProcessor",
61
+ "split_special_tokens": false,
62
+ "tokenizer_class": "Qwen2Tokenizer",
63
+ "unk_token": null
64
+ }
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 200,
3
+ "best_metric": 0.20741970837116241,
4
+ "best_model_checkpoint": "./llava_adalora_weather_model/checkpoint-200",
5
+ "epoch": 2.0411311053984575,
6
+ "eval_steps": 20,
7
+ "global_step": 200,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.10282776349614396,
14
+ "grad_norm": 0.5032290816307068,
15
+ "learning_rate": 6.75e-05,
16
+ "loss": 2.3108,
17
+ "mean_token_accuracy": 0.5181779790669679,
18
+ "num_tokens": 645254.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.20565552699228792,
23
+ "grad_norm": 0.5140016078948975,
24
+ "learning_rate": 0.0001425,
25
+ "loss": 1.9876,
26
+ "mean_token_accuracy": 0.5564090937376023,
27
+ "num_tokens": 1290816.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.20565552699228792,
32
+ "eval_loss": 1.6786144971847534,
33
+ "eval_mean_token_accuracy": 0.5918497213950524,
34
+ "eval_num_tokens": 1290816.0,
35
+ "eval_runtime": 199.77,
36
+ "eval_samples_per_second": 0.976,
37
+ "eval_steps_per_second": 0.976,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.30848329048843187,
42
+ "grad_norm": 1.200245976448059,
43
+ "learning_rate": 0.00021749999999999997,
44
+ "loss": 1.2898,
45
+ "mean_token_accuracy": 0.6574281774461269,
46
+ "num_tokens": 1936067.0,
47
+ "step": 30
48
+ },
49
+ {
50
+ "epoch": 0.41131105398457585,
51
+ "grad_norm": 0.3560621440410614,
52
+ "learning_rate": 0.00029249999999999995,
53
+ "loss": 0.5269,
54
+ "mean_token_accuracy": 0.8504049643874169,
55
+ "num_tokens": 2581570.0,
56
+ "step": 40
57
+ },
58
+ {
59
+ "epoch": 0.41131105398457585,
60
+ "eval_loss": 0.3815372884273529,
61
+ "eval_mean_token_accuracy": 0.8895098340816987,
62
+ "eval_num_tokens": 2581570.0,
63
+ "eval_runtime": 199.91,
64
+ "eval_samples_per_second": 0.975,
65
+ "eval_steps_per_second": 0.975,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.5141388174807198,
70
+ "grad_norm": 0.36290714144706726,
71
+ "learning_rate": 0.0002995163544683256,
72
+ "loss": 0.3431,
73
+ "mean_token_accuracy": 0.8966262958943844,
74
+ "num_tokens": 3226740.0,
75
+ "step": 50
76
+ },
77
+ {
78
+ "epoch": 0.6169665809768637,
79
+ "grad_norm": 0.3132888674736023,
80
+ "learning_rate": 0.00029784849709745616,
81
+ "loss": 0.3131,
82
+ "mean_token_accuracy": 0.9030718393623829,
83
+ "num_tokens": 3872000.0,
84
+ "step": 60
85
+ },
86
+ {
87
+ "epoch": 0.6169665809768637,
88
+ "eval_loss": 0.2877984046936035,
89
+ "eval_mean_token_accuracy": 0.9094783853261899,
90
+ "eval_num_tokens": 3872000.0,
91
+ "eval_runtime": 200.0291,
92
+ "eval_samples_per_second": 0.975,
93
+ "eval_steps_per_second": 0.975,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.7197943444730077,
98
+ "grad_norm": 0.3172520697116852,
99
+ "learning_rate": 0.0002950037303267096,
100
+ "loss": 0.2776,
101
+ "mean_token_accuracy": 0.9121568284928798,
102
+ "num_tokens": 4517650.0,
103
+ "step": 70
104
+ },
105
+ {
106
+ "epoch": 0.8226221079691517,
107
+ "grad_norm": 0.2681174576282501,
108
+ "learning_rate": 0.0002910046991800035,
109
+ "loss": 0.2463,
110
+ "mean_token_accuracy": 0.9197294652462006,
111
+ "num_tokens": 5162524.0,
112
+ "step": 80
113
+ },
114
+ {
115
+ "epoch": 0.8226221079691517,
116
+ "eval_loss": 0.24699676036834717,
117
+ "eval_mean_token_accuracy": 0.918833449559334,
118
+ "eval_num_tokens": 5162524.0,
119
+ "eval_runtime": 199.9764,
120
+ "eval_samples_per_second": 0.975,
121
+ "eval_steps_per_second": 0.975,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.9254498714652957,
126
+ "grad_norm": 0.25532031059265137,
127
+ "learning_rate": 0.00028588323690176954,
128
+ "loss": 0.2409,
129
+ "mean_token_accuracy": 0.9201722621917725,
130
+ "num_tokens": 5808159.0,
131
+ "step": 90
132
+ },
133
+ {
134
+ "epoch": 1.0205655526992288,
135
+ "grad_norm": 0.2883255183696747,
136
+ "learning_rate": 0.0002796801115567139,
137
+ "loss": 0.229,
138
+ "mean_token_accuracy": 0.9240316643908217,
139
+ "num_tokens": 6405024.0,
140
+ "step": 100
141
+ },
142
+ {
143
+ "epoch": 1.0205655526992288,
144
+ "eval_loss": 0.2340758889913559,
145
+ "eval_mean_token_accuracy": 0.9224844058354695,
146
+ "eval_num_tokens": 6405024.0,
147
+ "eval_runtime": 199.917,
148
+ "eval_samples_per_second": 0.975,
149
+ "eval_steps_per_second": 0.975,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 1.1233933161953726,
154
+ "grad_norm": 0.30399489402770996,
155
+ "learning_rate": 0.0002724447015062708,
156
+ "loss": 0.2179,
157
+ "mean_token_accuracy": 0.927613090723753,
158
+ "num_tokens": 7050233.0,
159
+ "step": 110
160
+ },
161
+ {
162
+ "epoch": 1.2262210796915167,
163
+ "grad_norm": 0.28451991081237793,
164
+ "learning_rate": 0.0002642346023450357,
165
+ "loss": 0.216,
166
+ "mean_token_accuracy": 0.9265601448714733,
167
+ "num_tokens": 7695653.0,
168
+ "step": 120
169
+ },
170
+ {
171
+ "epoch": 1.2262210796915167,
172
+ "eval_loss": 0.2247939258813858,
173
+ "eval_mean_token_accuracy": 0.925137395125169,
174
+ "eval_num_tokens": 7695653.0,
175
+ "eval_runtime": 199.5418,
176
+ "eval_samples_per_second": 0.977,
177
+ "eval_steps_per_second": 0.977,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 1.3290488431876606,
182
+ "grad_norm": 0.28032347559928894,
183
+ "learning_rate": 0.0002551151684260553,
184
+ "loss": 0.2093,
185
+ "mean_token_accuracy": 0.9289478570222854,
186
+ "num_tokens": 8341317.0,
187
+ "step": 130
188
+ },
189
+ {
190
+ "epoch": 1.4318766066838047,
191
+ "grad_norm": 0.3006415367126465,
192
+ "learning_rate": 0.0002451589926245468,
193
+ "loss": 0.2017,
194
+ "mean_token_accuracy": 0.930090955644846,
195
+ "num_tokens": 8986431.0,
196
+ "step": 140
197
+ },
198
+ {
199
+ "epoch": 1.4318766066838047,
200
+ "eval_loss": 0.22003041207790375,
201
+ "eval_mean_token_accuracy": 0.9265705820841666,
202
+ "eval_num_tokens": 8986431.0,
203
+ "eval_runtime": 199.7226,
204
+ "eval_samples_per_second": 0.976,
205
+ "eval_steps_per_second": 0.976,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 1.5347043701799485,
210
+ "grad_norm": 0.27291589975357056,
211
+ "learning_rate": 0.00023444532848124715,
212
+ "loss": 0.2008,
213
+ "mean_token_accuracy": 0.9297313310205937,
214
+ "num_tokens": 9631882.0,
215
+ "step": 150
216
+ },
217
+ {
218
+ "epoch": 1.6375321336760926,
219
+ "grad_norm": 0.2605527639389038,
220
+ "learning_rate": 0.00022305945932527308,
221
+ "loss": 0.2019,
222
+ "mean_token_accuracy": 0.9302895963191986,
223
+ "num_tokens": 10277533.0,
224
+ "step": 160
225
+ },
226
+ {
227
+ "epoch": 1.6375321336760926,
228
+ "eval_loss": 0.21295307576656342,
229
+ "eval_mean_token_accuracy": 0.9283858265632238,
230
+ "eval_num_tokens": 10277533.0,
231
+ "eval_runtime": 199.8041,
232
+ "eval_samples_per_second": 0.976,
233
+ "eval_steps_per_second": 0.976,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 1.7403598971722365,
238
+ "grad_norm": 0.2581302523612976,
239
+ "learning_rate": 0.0002110920193984228,
240
+ "loss": 0.2082,
241
+ "mean_token_accuracy": 0.9276637695729733,
242
+ "num_tokens": 10922895.0,
243
+ "step": 170
244
+ },
245
+ {
246
+ "epoch": 1.8431876606683804,
247
+ "grad_norm": 0.2544514238834381,
248
+ "learning_rate": 0.00019863827238493308,
249
+ "loss": 0.1954,
250
+ "mean_token_accuracy": 0.9318794839084148,
251
+ "num_tokens": 11568708.0,
252
+ "step": 180
253
+ },
254
+ {
255
+ "epoch": 1.8431876606683804,
256
+ "eval_loss": 0.20810775458812714,
257
+ "eval_mean_token_accuracy": 0.9295981232936565,
258
+ "eval_num_tokens": 11568708.0,
259
+ "eval_runtime": 200.1655,
260
+ "eval_samples_per_second": 0.974,
261
+ "eval_steps_per_second": 0.974,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 1.9460154241645244,
266
+ "grad_norm": 0.2642477750778198,
267
+ "learning_rate": 0.00018579735308976727,
268
+ "loss": 0.1966,
269
+ "mean_token_accuracy": 0.9328551657497883,
270
+ "num_tokens": 12213156.0,
271
+ "step": 190
272
+ },
273
+ {
274
+ "epoch": 2.0411311053984575,
275
+ "grad_norm": 0.25700676441192627,
276
+ "learning_rate": 0.00017267147830185608,
277
+ "loss": 0.1901,
278
+ "mean_token_accuracy": 0.9336085150370727,
279
+ "num_tokens": 12809961.0,
280
+ "step": 200
281
+ },
282
+ {
283
+ "epoch": 2.0411311053984575,
284
+ "eval_loss": 0.20741970837116241,
285
+ "eval_mean_token_accuracy": 0.9298222092481759,
286
+ "eval_num_tokens": 12809961.0,
287
+ "eval_runtime": 199.9295,
288
+ "eval_samples_per_second": 0.975,
289
+ "eval_steps_per_second": 0.975,
290
+ "step": 200
291
+ }
292
+ ],
293
+ "logging_steps": 10,
294
+ "max_steps": 392,
295
+ "num_input_tokens_seen": 0,
296
+ "num_train_epochs": 4,
297
+ "save_steps": 40,
298
+ "stateful_callbacks": {
299
+ "TrainerControl": {
300
+ "args": {
301
+ "should_epoch_stop": false,
302
+ "should_evaluate": false,
303
+ "should_log": false,
304
+ "should_save": true,
305
+ "should_training_stop": false
306
+ },
307
+ "attributes": {}
308
+ }
309
+ },
310
+ "total_flos": 5.760229780700876e+17,
311
+ "train_batch_size": 1,
312
+ "trial_name": null,
313
+ "trial_params": null
314
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4ee18fc7fc6461abdc27ef50b94a39880806ee3c787211adab9a8a0c2d2ed0c
3
+ size 5816