Add README
Browse files
README.md
CHANGED
@@ -1,62 +1,51 @@
|
|
1 |
---
|
|
|
2 |
base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
|
3 |
-
library_name: peft
|
4 |
-
model_name: llava_dora_weather_model
|
5 |
tags:
|
6 |
-
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
-
|
11 |
-
|
12 |
-
|
|
|
13 |
---
|
14 |
|
15 |
-
#
|
16 |
|
17 |
-
|
18 |
-
It has been trained using [TRL](https://github.com/huggingface/trl).
|
19 |
|
20 |
-
##
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
generator = pipeline("text-generation", model="None", device="cuda")
|
27 |
-
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
28 |
-
print(output["generated_text"])
|
29 |
-
```
|
30 |
-
|
31 |
-
## Training procedure
|
32 |
|
33 |
-
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
- Pytorch: 2.6.0+cu124
|
44 |
-
- Datasets: 4.0.0
|
45 |
-
- Tokenizers: 0.21.2
|
46 |
|
47 |
-
|
|
|
48 |
|
|
|
|
|
49 |
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
title = {{TRL: Transformer Reinforcement Learning}},
|
56 |
-
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
57 |
-
year = 2020,
|
58 |
-
journal = {GitHub repository},
|
59 |
-
publisher = {GitHub},
|
60 |
-
howpublished = {\url{https://github.com/huggingface/trl}}
|
61 |
-
}
|
62 |
-
```
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
|
|
|
|
|
4 |
tags:
|
5 |
+
- llava
|
6 |
+
- llava-onevision
|
7 |
+
- weather
|
8 |
+
- satellite
|
9 |
+
- morocco
|
10 |
+
- meteorology
|
11 |
+
- dora
|
12 |
+
- fine-tuned
|
13 |
---
|
14 |
|
15 |
+
# LLaVA-OneVision Weather Analysis - DoRA
|
16 |
|
17 |
+
Fine-tuned using **DoRA** technique for weather satellite imagery analysis.
|
|
|
18 |
|
19 |
+
## Model Details
|
20 |
|
21 |
+
- **Base Model:** llava-hf/llava-onevision-qwen2-7b-ov-hf
|
22 |
+
- **Technique:** DoRA
|
23 |
+
- **Domain:** Weather satellite imagery analysis
|
24 |
+
- **Dataset:** Weather satellite images with meteorological metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
## Usage
|
27 |
|
28 |
+
```python
|
29 |
+
from transformers import LlavaOnevisionForConditionalGeneration, AutoProcessor
|
30 |
+
import torch
|
31 |
|
32 |
+
# Load base model
|
33 |
+
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
34 |
+
"llava-hf/llava-onevision-qwen2-7b-ov-hf",
|
35 |
+
torch_dtype=torch.bfloat16,
|
36 |
+
device_map="auto"
|
37 |
+
)
|
38 |
+
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
|
|
|
|
|
|
|
39 |
|
40 |
+
# Load fine-tuned adapter
|
41 |
+
model.load_adapter("azdin/llava-onevision-weather-dora")
|
42 |
|
43 |
+
# Use for weather analysis...
|
44 |
+
```
|
45 |
|
46 |
+
## Training Details
|
47 |
|
48 |
+
- **Technique:** DoRA
|
49 |
+
- **Quantization:** 4-bit NF4
|
50 |
+
- **Training Data:** Weather satellite imagery with metadata
|
51 |
+
- **Target Modules:** Attention and projection layers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|