b-aser commited on
Commit
3fb973b
·
verified ·
1 Parent(s): b0e3fe0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -235
README.md CHANGED
@@ -1,8 +1,12 @@
1
  ---
2
- library_name: transformers
3
- license: mit
4
- language:
5
- - en
 
 
 
 
6
  metrics:
7
  - accuracy
8
  - f1
@@ -11,241 +15,65 @@ metrics:
11
  base_model:
12
  - google-bert/bert-base-uncased
13
  pipeline_tag: question-answering
 
14
  ---
15
 
16
- # Model Card for Model ID
17
-
18
- <!-- Provide a quick summary of what the model is/does. -->
19
-
20
-
21
-
22
- ## Model Details
23
-
24
- ### Architecture
25
-
26
- The model is based on a transformer-based architecture, leveraging attention mechanisms to capture contextual relationships in text.
27
-
28
- Fine-tuned using a custom training pipeline optimized for specific downstream tasks.
29
-
30
- ### Training Data
31
-
32
- Trained on a diverse dataset comprising text samples from various domains.
33
- Preprocessing steps include tokenization, normalization, and augmentation to ensure robustness and generalizability.
34
-
35
- ### Training Metrics
36
- 1
37
- 1.4043
38
- 1.4229
39
- 2
40
- 0.9750
41
- 1.3638
42
- 3
43
- 0.6081
44
- 1.5151
45
- 4
46
- 0.3593
47
- 1.7942
48
- 5
49
- 0.2212
50
- 2.0574
51
-
52
- #### Final Training Output:
53
-
54
- {
55
- "global_step": 8530,
56
- "training_loss": 0.7827,
57
- "metrics": {
58
- "train_runtime": 5246.0552,
59
- "train_samples_per_second": 13.003,
60
- "train_steps_per_second": 1.626,
61
- "total_flos": 1.3368e+16,
62
- "epoch": 5.0
63
- }
64
- }
65
- <!--
66
- ### Model Description
67
-
68
- <!-- Provide a longer summary of what this model is. -->
69
-
70
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
71
-
72
- - **Developed by:** [More Information Needed]
73
- - **Funded by [optional]:** [More Information Needed]
74
- - **Shared by [optional]:** [More Information Needed]
75
- - **Model type:** [More Information Needed]
76
- - **Language(s) (NLP):** [More Information Needed]
77
- - **License:** [More Information Needed]
78
- - **Finetuned from model [optional]:** [More Information Needed]
79
-
80
- ### Model Sources [optional]
81
-
82
- <!-- Provide the basic links for the model. -->
83
-
84
- - **Repository:** [More Information Needed]
85
- - **Paper [optional]:** [More Information Needed]
86
- - **Demo [optional]:** [More Information Needed]
87
-
88
- ## Uses
89
-
90
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
91
-
92
- ### Direct Use
93
-
94
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
95
-
96
- [More Information Needed]
97
 
98
- ### Downstream Use [optional]
99
 
100
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
101
-
102
- [More Information Needed]
103
-
104
- ### Out-of-Scope Use
105
-
106
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Bias, Risks, and Limitations
111
-
112
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
113
-
114
- [More Information Needed]
115
-
116
- ### Recommendations
117
-
118
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
119
-
120
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
121
-
122
- ## How to Get Started with the Model
123
-
124
- Use the code below to get started with the model.
125
-
126
- [More Information Needed]
127
 
128
  ## Training Details
129
 
130
- ### Training Data
131
-
132
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
133
-
134
- [More Information Needed]
135
-
136
- ### Training Procedure
137
-
138
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
139
-
140
- #### Preprocessing [optional]
141
-
142
- [More Information Needed]
143
-
144
-
145
- #### Training Hyperparameters
146
-
147
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
148
-
149
- #### Speeds, Sizes, Times [optional]
150
-
151
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
152
-
153
- [More Information Needed]
154
-
155
- ## Evaluation
156
-
157
- <!-- This section describes the evaluation protocols and provides the results. -->
158
-
159
- ### Testing Data, Factors & Metrics
160
-
161
- #### Testing Data
162
-
163
- <!-- This should link to a Dataset Card if possible. -->
164
-
165
- [More Information Needed]
166
-
167
- #### Factors
168
-
169
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
170
-
171
- [More Information Needed]
172
-
173
- #### Metrics
174
-
175
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
176
-
177
- [More Information Needed]
178
-
179
- ### Results
180
-
181
- [More Information Needed]
182
-
183
- #### Summary
184
-
185
-
186
-
187
- ## Model Examination [optional]
188
-
189
- <!-- Relevant interpretability work for the model goes here -->
190
-
191
- [More Information Needed]
192
-
193
- ## Environmental Impact
194
-
195
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
196
-
197
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
198
-
199
- - **Hardware Type:** [More Information Needed]
200
- - **Hours used:** [More Information Needed]
201
- - **Cloud Provider:** [More Information Needed]
202
- - **Compute Region:** [More Information Needed]
203
- - **Carbon Emitted:** [More Information Needed]
204
-
205
- ## Technical Specifications [optional]
206
-
207
- ### Model Architecture and Objective
208
-
209
- [More Information Needed]
210
-
211
- ### Compute Infrastructure
212
-
213
- [More Information Needed]
214
-
215
- #### Hardware
216
-
217
- [More Information Needed]
218
-
219
- #### Software
220
-
221
- [More Information Needed]
222
-
223
- ## Citation [optional]
224
-
225
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
226
-
227
- **BibTeX:**
228
-
229
- [More Information Needed]
230
-
231
- **APA:**
232
-
233
- [More Information Needed]
234
-
235
- ## Glossary [optional]
236
-
237
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
238
-
239
- [More Information Needed]
240
-
241
- ## More Information [optional]
242
-
243
- [More Information Needed]
244
-
245
- ## Model Card Authors [optional]
246
-
247
- [More Information Needed]
248
-
249
- ## Model Card Contact
250
-
251
- [More Information Needed] -->
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - llm
5
+ - text-generation
6
+ - pytorch
7
+ license: apache-2.0
8
+ datasets:
9
+ - custom
10
  metrics:
11
  - accuracy
12
  - f1
 
15
  base_model:
16
  - google-bert/bert-base-uncased
17
  pipeline_tag: question-answering
18
+ library_name: transformers
19
  ---
20
 
21
+ # JKU-G3-LLM-v2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ ## Model Description
24
 
25
+ JKU-G3-LLM-v2 is a language model developed by the ASER team at JKU. This second version builds upon previous architectures with enhanced training methodology and evaluation metrics.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Training Details
28
 
29
+ ### Hyperparameters
30
+ - Epochs: 5
31
+ - Training Samples: Unknown
32
+ - Batch Size: Unknown
33
+ - Learning Rate: Unknown
34
+
35
+ ### Training Results
36
+ | Epoch | Training Loss | Validation Loss |
37
+ |-------|---------------|-----------------|
38
+ | 1 | 1.404300 | 1.422856 |
39
+ | 2 | 0.975000 | 1.363832 |
40
+ | 3 | 0.608100 | 1.515084 |
41
+ | 4 | 0.359300 | 1.794247 |
42
+ | 5 | 0.221200 | 2.057410 |
43
+
44
+ ### Performance Metrics
45
+ - Final Training Loss: 0.7827
46
+ - Accuracy: 0.6
47
+ - F1 Score: 0.6
48
+ - BLEU: 0.0
49
+ - Precisions: [0.667, 0.286, 0.2, 0.0]
50
+ - ROUGE:
51
+ - ROUGE-1: 0.583
52
+ - ROUGE-2: 0.286
53
+ - ROUGE-L: 0.583
54
+
55
+ ### Computational Details
56
+ - Total FLOS: 1.3368e+16
57
+ - Training Runtime: 5,246.06 seconds (~1.46 hours)
58
+ - Training Samples/Second: 13.003
59
+ - Training Steps/Second: 1.626
60
+
61
+ ## Intended Uses & Limitations
62
+
63
+ This model is intended for research purposes and text generation tasks. Users should be aware of the following limitations:
64
+
65
+ 1. The model shows some overfitting tendencies as evidenced by decreasing training loss but increasing validation loss
66
+ 2. Performance metrics indicate room for improvement in generation quality
67
+ 3. The model may inherit biases present in the training data
68
+
69
+ ## How to Use
70
+
71
+ ```python
72
+ from transformers import AutoModelForCausalLM, AutoTokenizer
73
+
74
+ model = AutoModelForCausalLM.from_pretrained("b-aser/jku-g3-llm-v2")
75
+ tokenizer = AutoTokenizer.from_pretrained("b-aser/jku-g3-llm-v2")
76
+
77
+ inputs = tokenizer("Your input text here", return_tensors="pt")
78
+ outputs = model.generate(**inputs)
79
+ print(tokenizer.decode(outputs[0]))