Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
-
|
|
|
|
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
- f1
|
@@ -11,241 +15,65 @@ metrics:
|
|
11 |
base_model:
|
12 |
- google-bert/bert-base-uncased
|
13 |
pipeline_tag: question-answering
|
|
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
## Model Details
|
23 |
-
|
24 |
-
### Architecture
|
25 |
-
|
26 |
-
The model is based on a transformer-based architecture, leveraging attention mechanisms to capture contextual relationships in text.
|
27 |
-
|
28 |
-
Fine-tuned using a custom training pipeline optimized for specific downstream tasks.
|
29 |
-
|
30 |
-
### Training Data
|
31 |
-
|
32 |
-
Trained on a diverse dataset comprising text samples from various domains.
|
33 |
-
Preprocessing steps include tokenization, normalization, and augmentation to ensure robustness and generalizability.
|
34 |
-
|
35 |
-
### Training Metrics
|
36 |
-
1
|
37 |
-
1.4043
|
38 |
-
1.4229
|
39 |
-
2
|
40 |
-
0.9750
|
41 |
-
1.3638
|
42 |
-
3
|
43 |
-
0.6081
|
44 |
-
1.5151
|
45 |
-
4
|
46 |
-
0.3593
|
47 |
-
1.7942
|
48 |
-
5
|
49 |
-
0.2212
|
50 |
-
2.0574
|
51 |
-
|
52 |
-
#### Final Training Output:
|
53 |
-
|
54 |
-
{
|
55 |
-
"global_step": 8530,
|
56 |
-
"training_loss": 0.7827,
|
57 |
-
"metrics": {
|
58 |
-
"train_runtime": 5246.0552,
|
59 |
-
"train_samples_per_second": 13.003,
|
60 |
-
"train_steps_per_second": 1.626,
|
61 |
-
"total_flos": 1.3368e+16,
|
62 |
-
"epoch": 5.0
|
63 |
-
}
|
64 |
-
}
|
65 |
-
<!--
|
66 |
-
### Model Description
|
67 |
-
|
68 |
-
<!-- Provide a longer summary of what this model is. -->
|
69 |
-
|
70 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
71 |
-
|
72 |
-
- **Developed by:** [More Information Needed]
|
73 |
-
- **Funded by [optional]:** [More Information Needed]
|
74 |
-
- **Shared by [optional]:** [More Information Needed]
|
75 |
-
- **Model type:** [More Information Needed]
|
76 |
-
- **Language(s) (NLP):** [More Information Needed]
|
77 |
-
- **License:** [More Information Needed]
|
78 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
79 |
-
|
80 |
-
### Model Sources [optional]
|
81 |
-
|
82 |
-
<!-- Provide the basic links for the model. -->
|
83 |
-
|
84 |
-
- **Repository:** [More Information Needed]
|
85 |
-
- **Paper [optional]:** [More Information Needed]
|
86 |
-
- **Demo [optional]:** [More Information Needed]
|
87 |
-
|
88 |
-
## Uses
|
89 |
-
|
90 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
91 |
-
|
92 |
-
### Direct Use
|
93 |
-
|
94 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
|
98 |
-
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
### Out-of-Scope Use
|
105 |
-
|
106 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
107 |
-
|
108 |
-
[More Information Needed]
|
109 |
-
|
110 |
-
## Bias, Risks, and Limitations
|
111 |
-
|
112 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
### Recommendations
|
117 |
-
|
118 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
119 |
-
|
120 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
121 |
-
|
122 |
-
## How to Get Started with the Model
|
123 |
-
|
124 |
-
Use the code below to get started with the model.
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
|
128 |
## Training Details
|
129 |
|
130 |
-
###
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
### Training
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
#### Summary
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
## Model Examination [optional]
|
188 |
-
|
189 |
-
<!-- Relevant interpretability work for the model goes here -->
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Environmental Impact
|
194 |
-
|
195 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
196 |
-
|
197 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
198 |
-
|
199 |
-
- **Hardware Type:** [More Information Needed]
|
200 |
-
- **Hours used:** [More Information Needed]
|
201 |
-
- **Cloud Provider:** [More Information Needed]
|
202 |
-
- **Compute Region:** [More Information Needed]
|
203 |
-
- **Carbon Emitted:** [More Information Needed]
|
204 |
-
|
205 |
-
## Technical Specifications [optional]
|
206 |
-
|
207 |
-
### Model Architecture and Objective
|
208 |
-
|
209 |
-
[More Information Needed]
|
210 |
-
|
211 |
-
### Compute Infrastructure
|
212 |
-
|
213 |
-
[More Information Needed]
|
214 |
-
|
215 |
-
#### Hardware
|
216 |
-
|
217 |
-
[More Information Needed]
|
218 |
-
|
219 |
-
#### Software
|
220 |
-
|
221 |
-
[More Information Needed]
|
222 |
-
|
223 |
-
## Citation [optional]
|
224 |
-
|
225 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
226 |
-
|
227 |
-
**BibTeX:**
|
228 |
-
|
229 |
-
[More Information Needed]
|
230 |
-
|
231 |
-
**APA:**
|
232 |
-
|
233 |
-
[More Information Needed]
|
234 |
-
|
235 |
-
## Glossary [optional]
|
236 |
-
|
237 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
238 |
-
|
239 |
-
[More Information Needed]
|
240 |
-
|
241 |
-
## More Information [optional]
|
242 |
-
|
243 |
-
[More Information Needed]
|
244 |
-
|
245 |
-
## Model Card Authors [optional]
|
246 |
-
|
247 |
-
[More Information Needed]
|
248 |
-
|
249 |
-
## Model Card Contact
|
250 |
-
|
251 |
-
[More Information Needed] -->
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- llm
|
5 |
+
- text-generation
|
6 |
+
- pytorch
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- custom
|
10 |
metrics:
|
11 |
- accuracy
|
12 |
- f1
|
|
|
15 |
base_model:
|
16 |
- google-bert/bert-base-uncased
|
17 |
pipeline_tag: question-answering
|
18 |
+
library_name: transformers
|
19 |
---
|
20 |
|
21 |
+
# JKU-G3-LLM-v2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
## Model Description
|
24 |
|
25 |
+
JKU-G3-LLM-v2 is a language model developed by the ASER team at JKU. This second version builds upon previous architectures with enhanced training methodology and evaluation metrics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Training Details
|
28 |
|
29 |
+
### Hyperparameters
|
30 |
+
- Epochs: 5
|
31 |
+
- Training Samples: Unknown
|
32 |
+
- Batch Size: Unknown
|
33 |
+
- Learning Rate: Unknown
|
34 |
+
|
35 |
+
### Training Results
|
36 |
+
| Epoch | Training Loss | Validation Loss |
|
37 |
+
|-------|---------------|-----------------|
|
38 |
+
| 1 | 1.404300 | 1.422856 |
|
39 |
+
| 2 | 0.975000 | 1.363832 |
|
40 |
+
| 3 | 0.608100 | 1.515084 |
|
41 |
+
| 4 | 0.359300 | 1.794247 |
|
42 |
+
| 5 | 0.221200 | 2.057410 |
|
43 |
+
|
44 |
+
### Performance Metrics
|
45 |
+
- Final Training Loss: 0.7827
|
46 |
+
- Accuracy: 0.6
|
47 |
+
- F1 Score: 0.6
|
48 |
+
- BLEU: 0.0
|
49 |
+
- Precisions: [0.667, 0.286, 0.2, 0.0]
|
50 |
+
- ROUGE:
|
51 |
+
- ROUGE-1: 0.583
|
52 |
+
- ROUGE-2: 0.286
|
53 |
+
- ROUGE-L: 0.583
|
54 |
+
|
55 |
+
### Computational Details
|
56 |
+
- Total FLOS: 1.3368e+16
|
57 |
+
- Training Runtime: 5,246.06 seconds (~1.46 hours)
|
58 |
+
- Training Samples/Second: 13.003
|
59 |
+
- Training Steps/Second: 1.626
|
60 |
+
|
61 |
+
## Intended Uses & Limitations
|
62 |
+
|
63 |
+
This model is intended for research purposes and text generation tasks. Users should be aware of the following limitations:
|
64 |
+
|
65 |
+
1. The model shows some overfitting tendencies as evidenced by decreasing training loss but increasing validation loss
|
66 |
+
2. Performance metrics indicate room for improvement in generation quality
|
67 |
+
3. The model may inherit biases present in the training data
|
68 |
+
|
69 |
+
## How to Use
|
70 |
+
|
71 |
+
```python
|
72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
73 |
+
|
74 |
+
model = AutoModelForCausalLM.from_pretrained("b-aser/jku-g3-llm-v2")
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained("b-aser/jku-g3-llm-v2")
|
76 |
+
|
77 |
+
inputs = tokenizer("Your input text here", return_tensors="pt")
|
78 |
+
outputs = model.generate(**inputs)
|
79 |
+
print(tokenizer.decode(outputs[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|