ASR for African Voices
Collection
Robust speech-to-text models for languages of Africa
•
7 items
•
Updated
•
1
This model is a fine-tuned version of Wav2Vec2-BERT 2.0 for Kinyarwanda automatic speech recognition (ASR). It was trained on the 1000 hours dataset from the Kinyarwanda ASR hackthon on Kaggle (Track B), dataset covering Health, Government, Finance, Education, and Agriculture domains. The model is robust and the in-domain WER is below 8.4%.
The model can be used directly for automatic speech recognition of Kinyarwanda audio:
from transformers import Wav2Vec2BertProcessor, Wav2Vec2BertForCTC
import torch
import torchaudio
# load model and processor
processor = Wav2Vec2BertProcessor.from_pretrained("badrex/w2v-bert-2.0-kinyarwanda-asr-1000h")
model = Wav2Vec2BertForCTC.from_pretrained("badrex/w2v-bert-2.0-kinyarwanda-asr-1000h")
# load audio
audio_input, sample_rate = torchaudio.load("path/to/audio.wav")
# preprocess
inputs = processor(audio_input.squeeze(), sampling_rate=sample_rate, return_tensors="pt")
# inference
with torch.no_grad():
logits = model(**inputs).logits
# decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
print(transcription)
This model can be used as a foundation for:
The model was fine-tuned on the Kinyarwanda ASR hackthon - Track B dataset:
@misc{w2v_bert_kinyarwanda_asr,
author = {Badr M. Abdullah},
title = {Adapting Wav2Vec2-BERT 2.0 for Kinyarwanda ASR},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/badrex/w2v-bert-2.0-kinyarwanda-asr-1000h}
}
@misc{kinyarwanda_asr_track_b,
title={Kinyarwanda Automatic Speech Recognition Track B},
author={Digital Umuganda},
year={2025},
url={https://www.kaggle.com/competitions/kinyarwanda-automatic-speech-recognition-track-b}
}
For questions or issues, please contact via the Hugging Face model repository.
Base model
facebook/w2v-bert-2.0