--- library_name: transformers language: - jv license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper - javanese - asr - generated_from_trainer metrics: - wer model-index: - name: Whisper-Large-v2-Java-v2 results: [] --- # Whisper-Large-v2-Java-v2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1112 - Wer: 0.0612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4821 | 0.4 | 1000 | 0.3570 | 0.2268 | | 0.4761 | 0.8 | 2000 | 0.3474 | 0.2397 | | 0.3099 | 1.2 | 3000 | 0.3075 | 0.2026 | | 0.3108 | 1.6 | 4000 | 0.2666 | 0.1971 | | 0.3131 | 2.0 | 5000 | 0.2173 | 0.1531 | | 0.1796 | 2.4 | 6000 | 0.2026 | 0.1384 | | 0.17 | 2.8 | 7000 | 0.1922 | 0.1378 | | 0.0995 | 3.2 | 8000 | 0.1792 | 0.1206 | | 0.0972 | 3.6 | 9000 | 0.1670 | 0.1149 | | 0.097 | 4.0 | 10000 | 0.1545 | 0.1096 | | 0.0553 | 4.4 | 11000 | 0.1575 | 0.1030 | | 0.0526 | 4.8 | 12000 | 0.1431 | 0.0890 | | 0.0299 | 5.2 | 13000 | 0.1372 | 0.0833 | | 0.0311 | 5.6 | 14000 | 0.1258 | 0.0780 | | 0.0295 | 6.0 | 15000 | 0.1201 | 0.0725 | | 0.0151 | 6.4 | 16000 | 0.1229 | 0.0742 | | 0.0163 | 6.8 | 17000 | 0.1137 | 0.0658 | | 0.0082 | 7.2 | 18000 | 0.1142 | 0.0639 | | 0.0092 | 7.6 | 19000 | 0.1121 | 0.0627 | | 0.006 | 8.0 | 20000 | 0.1112 | 0.0612 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.7.0+cu128 - Datasets 2.16.0 - Tokenizers 0.21.1