--- library_name: transformers language: - jv license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper - javanese - asr - generated_from_trainer metrics: - wer model-index: - name: Whisper-Tiny-Java-v7 results: [] --- # Whisper-Tiny-Java-v7 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6090 - Wer: 0.5104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9973 | 8.0 | 1000 | 1.0428 | 0.6821 | | 0.3139 | 16.0 | 2000 | 0.8733 | 0.6234 | | 0.0988 | 24.0 | 3000 | 0.8925 | 0.6347 | | 0.0499 | 32.0 | 4000 | 0.9389 | 0.6149 | | 0.0349 | 40.0 | 5000 | 0.9879 | 0.6206 | | 0.0246 | 48.0 | 6000 | 1.0245 | 0.4681 | | 0.0164 | 56.0 | 7000 | 1.1032 | 0.4715 | | 0.0118 | 64.0 | 8000 | 1.1389 | 0.5985 | | 0.0094 | 72.0 | 9000 | 1.1457 | 0.5793 | | 0.0086 | 80.0 | 10000 | 1.1854 | 0.5375 | | 0.0067 | 88.0 | 11000 | 1.2372 | 0.4664 | | 0.005 | 96.0 | 12000 | 1.2564 | 0.4992 | | 0.0043 | 104.0 | 13000 | 1.2725 | 0.4478 | | 0.0039 | 112.0 | 14000 | 1.3331 | 0.5308 | | 0.0036 | 120.0 | 15000 | 1.3492 | 0.6036 | | 0.0028 | 128.0 | 16000 | 1.3910 | 0.4551 | | 0.0034 | 136.0 | 17000 | 1.4366 | 0.4907 | | 0.0024 | 144.0 | 18000 | 1.3797 | 0.6126 | | 0.0019 | 152.0 | 19000 | 1.4368 | 0.5229 | | 0.0017 | 160.0 | 20000 | 1.4499 | 0.5980 | | 0.0014 | 168.0 | 21000 | 1.4369 | 0.5940 | | 0.0015 | 176.0 | 22000 | 1.4615 | 0.5308 | | 0.001 | 184.0 | 23000 | 1.4453 | 0.4986 | | 0.0009 | 192.0 | 24000 | 1.4906 | 0.5471 | | 0.0007 | 200.0 | 25000 | 1.4574 | 0.4941 | | 0.0011 | 208.0 | 26000 | 1.4995 | 0.4647 | | 0.0007 | 216.0 | 27000 | 1.5195 | 0.5155 | | 0.0011 | 224.0 | 28000 | 1.4928 | 0.5483 | | 0.0011 | 232.0 | 29000 | 1.5243 | 0.5144 | | 0.0007 | 240.0 | 30000 | 1.5805 | 0.4884 | | 0.0005 | 248.0 | 31000 | 1.5294 | 0.5116 | | 0.0005 | 256.0 | 32000 | 1.5940 | 0.4975 | | 0.0003 | 264.0 | 33000 | 1.5760 | 0.5003 | | 0.0004 | 272.0 | 34000 | 1.5940 | 0.4873 | | 0.0003 | 280.0 | 35000 | 1.6010 | 0.4681 | | 0.0004 | 288.0 | 36000 | 1.5837 | 0.4845 | | 0.0006 | 296.0 | 37000 | 1.5839 | 0.4794 | | 0.0002 | 304.0 | 38000 | 1.5652 | 0.4754 | | 0.0003 | 312.0 | 39000 | 1.6083 | 0.4833 | | 0.0002 | 320.0 | 40000 | 1.5750 | 0.5189 | | 0.0004 | 328.0 | 41000 | 1.6199 | 0.5980 | | 0.0001 | 336.0 | 42000 | 1.5783 | 0.5353 | | 0.0001 | 344.0 | 43000 | 1.5898 | 0.5099 | | 0.0005 | 352.0 | 44000 | 1.6005 | 0.5833 | | 0.0002 | 360.0 | 45000 | 1.5903 | 0.4873 | | 0.0002 | 368.0 | 46000 | 1.6196 | 0.5150 | | 0.0001 | 376.0 | 47000 | 1.6212 | 0.5251 | | 0.0002 | 384.0 | 48000 | 1.6180 | 0.5539 | | 0.0001 | 392.0 | 49000 | 1.6104 | 0.4963 | | 0.0001 | 400.0 | 50000 | 1.6090 | 0.5104 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.7.0+cu128 - Datasets 2.16.0 - Tokenizers 0.21.1