File size: 3,489 Bytes
4286500
9d8458e
 
 
4286500
 
 
 
9d8458e
4286500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
4286500
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
 
4286500
9d8458e
4286500
9d8458e
4286500
9d8458e
4286500
 
 
9d8458e
 
4286500
 
 
 
9d8458e
4286500
9d8458e
4286500
 
9d8458e
4286500
 
 
9d8458e
 
4286500
9c2604e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
base_model:
- bamec66557/VICIOUS_MESH-12B-BETA
- bamec66557/VICIOUS_MESH-12B-OMEGA
library_name: transformers
tags:
- mergekit
- merge

---
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the SLERP merge method.

### Models Merged

The following models were included in the merge:
* [bamec66557/VICIOUS_MESH-12B-BETA](https://huggingface.co/bamec66557/VICIOUS_MESH-12B-BETA)
* [bamec66557/VICIOUS_MESH-12B-OMEGA](https://huggingface.co/bamec66557/VICIOUS_MESH-12B-OMEGA)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
base_model: bamec66557/VICIOUS_MESH-12B-OMEGA
dtype: bfloat16
merge_method: slerp
tokenizer_source: base

# Slices Configuration
slices:
  - sources:
      - model: bamec66557/VICIOUS_MESH-12B-OMEGA
        layer_range: [0, 10]
      - model: bamec66557/VICIOUS_MESH-12B-BETA
        layer_range: [0, 10]
    parameters:
      t:
        - name: self_attn
          value: [0.5, 0.55, 0.6, 0.65, 0.7]
        - name: mlp
          value: [1.0, 1.05, 1.1, 1.15, 1.2]
        - name: layer_norm
          value: [0.9, 0.95, 1.0, 1.05, 1.1]

  - sources:
      - model: bamec66557/VICIOUS_MESH-12B-OMEGA
        layer_range: [10, 20]
      - model: bamec66557/VICIOUS_MESH-12B-BETA
        layer_range: [10, 20]
    parameters:
      t:
        - name: self_attn
          value: [0.4, 0.45, 0.5, 0.55, 0.6]
        - name: mlp
          value: [1.1, 1.15, 1.2, 1.25, 1.3]
        - name: layer_norm
          value: [1.0, 1.05, 1.1, 1.15, 1.2]

  - sources:
      - model: bamec66557/VICIOUS_MESH-12B-OMEGA
        layer_range: [20, 30]
      - model: bamec66557/VICIOUS_MESH-12B-BETA
        layer_range: [20, 30]
    parameters:
      t:
        - name: self_attn
          value: [0.6, 0.65, 0.7, 0.75, 0.8]
        - name: mlp
          value: [0.9, 0.95, 1.0, 1.05, 1.1]
        - name: layer_norm
          value: [0.85, 0.9, 0.95, 1.0, 1.05]

  - sources:
      - model: bamec66557/VICIOUS_MESH-12B-OMEGA
        layer_range: [30, 40]
      - model: bamec66557/VICIOUS_MESH-12B-BETA
        layer_range: [30, 40]
    parameters:
      t:
        - name: self_attn
          value: [0.7, 0.75, 0.8, 0.85, 0.9]
        - name: mlp
          value: [0.8, 0.85, 0.9, 0.95, 1.0]
        - name: layer_norm
          value: [0.8, 0.85, 0.9, 0.95, 1.0]

# Regularization
regularization:
  - method: gradient_penalty
    scale: 0.05  # Increased influence for gradient control
  - method: weight_clipping
    clip_range: [-0.2, 0.2]  # Broader clipping range for flexibility
  - method: random_noise
    scale: 0.01  # Stronger noise injection
  - method: attention_dropout
    scale: 0.1  # Higher dropout to reduce attention fixation

# Postprocessing
postprocessing:
  - operation: entropy_regularization
    scale: 0.05  # Stronger encouragement for diverse outputs
  - operation: non_linear_scaling
    parameters:
      function: tanh
  - operation: sharpening
    intensity: 0.5  # Enhanced sharpening for precise outputs
  - operation: gaussian_smoothing
    sigma: 1.5  # Increased smoothing for stable outputs
  - operation: normalize
  - operation: dynamic_scaling
    scale_range: [0.8, 1.2]  # Expanded dynamic range for scaling
  - operation: smoothing
    parameters:
      adaptive: true
      range: [0.85, 1.15]  # Wider adaptive smoothing range
      kernel_size: 5

```