--- language: - pl license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small PL results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: pl split: test args: pl metrics: - type: wer value: 8.85 name: WER - type: wer_without_norm value: 21.75 name: WER unnormalized - type: cer value: 2.63 name: CER - type: mer value: 8.76 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: pl split: test metrics: - type: wer value: 12.18 name: WER - type: wer_without_norm value: 32.17 name: WER unnormalized - type: cer value: 6.99 name: CER - type: mer value: 11.84 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: pl_pl split: test metrics: - type: wer value: 12.77 name: WER - type: wer_without_norm value: 32.37 name: WER unnormalized - type: cer value: 5.87 name: CER - type: mer value: 12.52 name: MER --- # Whisper Small PL This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3739 - Wer: 8.5898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0474 | 1.1 | 1000 | 0.2561 | 9.4612 | | 0.0119 | 3.09 | 2000 | 0.2901 | 8.9726 | | 0.0045 | 5.08 | 3000 | 0.3151 | 8.8870 | | 0.0007 | 7.07 | 4000 | 0.4218 | 8.6032 | | 0.0005 | 9.07 | 5000 | 0.3739 | 8.5898 | ### Evaluation results When tested on diffrent polish ASR datasets (splits: test), this model achieves the following results: | Dataset | WER | WER unnormalized | CER | MER | |:-----------------:|:-----:|:----------------:|:-----:|:-----:| |common_voice_11_0 | 8.85 | 21.75 | 2.63 | 8.76 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2