--- library_name: transformers license: other datasets: - mlabonne/orpo-dpo-mix-40k - Open-Orca/SlimOrca-Dedup - jondurbin/airoboros-3.2 - microsoft/orca-math-word-problems-200k - m-a-p/Code-Feedback - MaziyarPanahi/WizardLM_evol_instruct_V2_196k base_model: meta-llama/Meta-Llama-3-8B --- # llama-3-neural-chat-v1-8b ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/6XQuhjWNr6C4RbU9f1k99.png) ## Model Details ### Model Description I fine-tuned llama-3 8B on an approach similar to Intel's neural chat language model. I have slightly modified the data sources so it is stronger in coding, math, and writing. I use both SFT and DPO. - **Developed by:** Locutusque - **Model type:** Built with Meta Llama 3 - **Language(s) (NLP):** Many? - **License:** Llama 3 license https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE ## Uses This model has great performance in writing and coding. ## Training Data - Open-Orca/SlimOrca-Dedup - jondurbin/airoboros-3.2 - microsoft/orca-math-word-problems-200k - m-a-p/Code-Feedback - MaziyarPanahi/WizardLM_evol_instruct_V2_196k - mlabonne/orpo-dpo-mix-40k ### Direct Use Conversational AI. ## Evaluations | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |---------------------------------|-------|----------------|-----:|-----------|-----:|---|-----:| |truthfulqa_mc2 | 2|none | 0|acc |0.5627|± |0.0154| |gsm8k | 3|strict-match | 5|exact_match|0.5481|± |0.0137| | | |flexible-extract| 5|exact_match|0.5557|± |0.0137| |agieval_nous |N/A |none | 0|acc |0.3763|± |0.0093| | | |none | 0|acc_norm |0.3665|± |0.0093| | - agieval_aqua_rat | 1|none | 0|acc |0.2087|± |0.0255| | | |none | 0|acc_norm |0.2047|± |0.0254| | - agieval_logiqa_en | 1|none | 0|acc |0.3456|± |0.0187| | | |none | 0|acc_norm |0.3594|± |0.0188| | - agieval_lsat_ar | 1|none | 0|acc |0.1826|± |0.0255| | | |none | 0|acc_norm |0.1783|± |0.0253| | - agieval_lsat_lr | 1|none | 0|acc |0.3549|± |0.0212| | | |none | 0|acc_norm |0.3451|± |0.0211| | - agieval_lsat_rc | 1|none | 0|acc |0.5242|± |0.0305| | | |none | 0|acc_norm |0.5130|± |0.0305| | - agieval_sat_en | 1|none | 0|acc |0.6650|± |0.0330| | | |none | 0|acc_norm |0.6505|± |0.0333| | - agieval_sat_en_without_passage| 1|none | 0|acc |0.4175|± |0.0344| | | |none | 0|acc_norm |0.3738|± |0.0338| | - agieval_sat_math | 1|none | 0|acc |0.4227|± |0.0334| | | |none | 0|acc_norm |0.3682|± |0.0326|