bartowski commited on
Commit
9c66e83
·
verified ·
1 Parent(s): c6ca69a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +165 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ quantized_by: bartowski
3
+ pipeline_tag: text-generation
4
+ ---
5
+
6
+ ## Llamacpp imatrix Quantizations of Mistral-Small-3.2-24B-Instruct-2506 by mistralai
7
+
8
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b5697">b5697</a> for quantization.
9
+
10
+ Original model: https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506
11
+
12
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
13
+
14
+ Run them in [LM Studio](https://lmstudio.ai/)
15
+
16
+ Run them directly with [llama.cpp](https://github.com/ggerganov/llama.cpp), or any other llama.cpp based project
17
+
18
+ ## Prompt format
19
+
20
+ No prompt format found, check original model page
21
+
22
+ ## Download a file (not the whole branch) from below:
23
+
24
+ | Filename | Quant type | File Size | Split | Description |
25
+ | -------- | ---------- | --------- | ----- | ----------- |
26
+ | [Mistral-Small-3.2-24B-Instruct-2506-bf16.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-bf16.gguf) | bf16 | 47.15GB | false | Full BF16 weights. |
27
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q8_0.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q8_0.gguf) | Q8_0 | 25.05GB | false | Extremely high quality, generally unneeded but max available quant. |
28
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q6_K_L.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q6_K_L.gguf) | Q6_K_L | 19.67GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
29
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q6_K.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q6_K.gguf) | Q6_K | 19.35GB | false | Very high quality, near perfect, *recommended*. |
30
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q5_K_L.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q5_K_L.gguf) | Q5_K_L | 17.18GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
31
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q5_K_M.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q5_K_M.gguf) | Q5_K_M | 16.76GB | false | High quality, *recommended*. |
32
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q5_K_S.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q5_K_S.gguf) | Q5_K_S | 16.30GB | false | High quality, *recommended*. |
33
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q4_1.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_1.gguf) | Q4_1 | 14.87GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. |
34
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q4_K_L.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_L.gguf) | Q4_K_L | 14.83GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
35
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf) | Q4_K_M | 14.33GB | false | Good quality, default size for most use cases, *recommended*. |
36
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q4_K_S.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_S.gguf) | Q4_K_S | 13.55GB | false | Slightly lower quality with more space savings, *recommended*. |
37
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q4_0.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_0.gguf) | Q4_0 | 13.49GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. |
38
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ4_NL.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ4_NL.gguf) | IQ4_NL | 13.47GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. |
39
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q3_K_XL.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q3_K_XL.gguf) | Q3_K_XL | 12.99GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
40
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ4_XS.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ4_XS.gguf) | IQ4_XS | 12.76GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
41
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q3_K_L.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q3_K_L.gguf) | Q3_K_L | 12.40GB | false | Lower quality but usable, good for low RAM availability. |
42
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q3_K_M.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q3_K_M.gguf) | Q3_K_M | 11.47GB | false | Low quality. |
43
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ3_M.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ3_M.gguf) | IQ3_M | 10.65GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
44
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q3_K_S.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q3_K_S.gguf) | Q3_K_S | 10.40GB | false | Low quality, not recommended. |
45
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ3_XS.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ3_XS.gguf) | IQ3_XS | 9.91GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
46
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q2_K_L.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q2_K_L.gguf) | Q2_K_L | 9.55GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
47
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ3_XXS.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ3_XXS.gguf) | IQ3_XXS | 9.28GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. |
48
+ | [Mistral-Small-3.2-24B-Instruct-2506-Q2_K.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q2_K.gguf) | Q2_K | 8.89GB | false | Very low quality but surprisingly usable. |
49
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ2_M.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ2_M.gguf) | IQ2_M | 8.11GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
50
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ2_S.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ2_S.gguf) | IQ2_S | 7.48GB | false | Low quality, uses SOTA techniques to be usable. |
51
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ2_XS.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ2_XS.gguf) | IQ2_XS | 7.21GB | false | Low quality, uses SOTA techniques to be usable. |
52
+ | [Mistral-Small-3.2-24B-Instruct-2506-IQ2_XXS.gguf](https://huggingface.co/bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF/blob/main/mistralai_Mistral-Small-3.2-24B-Instruct-2506-IQ2_XXS.gguf) | IQ2_XXS | 6.55GB | false | Very low quality, uses SOTA techniques to be usable. |
53
+
54
+ ## Embed/output weights
55
+
56
+ Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
57
+
58
+ ## Downloading using huggingface-cli
59
+
60
+ <details>
61
+ <summary>Click to view download instructions</summary>
62
+
63
+ First, make sure you have hugginface-cli installed:
64
+
65
+ ```
66
+ pip install -U "huggingface_hub[cli]"
67
+ ```
68
+
69
+ Then, you can target the specific file you want:
70
+
71
+ ```
72
+ huggingface-cli download bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF --include "mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf" --local-dir ./
73
+ ```
74
+
75
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
76
+
77
+ ```
78
+ huggingface-cli download bartowski/mistralai_Mistral-Small-3.2-24B-Instruct-2506-GGUF --include "mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q8_0/*" --local-dir ./
79
+ ```
80
+
81
+ You can either specify a new local-dir (mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q8_0) or download them all in place (./)
82
+
83
+ </details>
84
+
85
+ ## ARM/AVX information
86
+
87
+ Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass.
88
+
89
+ Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly.
90
+
91
+ As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0.
92
+
93
+ Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase.
94
+
95
+ <details>
96
+ <summary>Click to view Q4_0_X_X information (deprecated</summary>
97
+
98
+ I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking.
99
+
100
+ <details>
101
+ <summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary>
102
+
103
+ | model | size | params | backend | threads | test | t/s | % (vs Q4_0) |
104
+ | ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: |
105
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
106
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
107
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
108
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
109
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
110
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
111
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
112
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
113
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
114
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
115
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
116
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
117
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
118
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
119
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
120
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
121
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
122
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
123
+
124
+ Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation
125
+
126
+ </details>
127
+
128
+ </details>
129
+
130
+ ## Which file should I choose?
131
+
132
+ <details>
133
+ <summary>Click here for details</summary>
134
+
135
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
136
+
137
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
138
+
139
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
140
+
141
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
142
+
143
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
144
+
145
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
146
+
147
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
148
+
149
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
150
+
151
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
152
+
153
+ These I-quants can also be used on CPU, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
154
+
155
+ </details>
156
+
157
+ ## Credits
158
+
159
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset.
160
+
161
+ Thank you ZeroWw for the inspiration to experiment with embed/output.
162
+
163
+ Thank you to LM Studio for sponsoring my work.
164
+
165
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski