bartowski commited on
Commit
6e320bc
·
verified ·
1 Parent(s): 0f1fb6b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +163 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ quantized_by: bartowski
3
+ pipeline_tag: text-generation
4
+ ---
5
+
6
+ ## Llamacpp imatrix Quantizations of NVIDIA-Nemotron-Nano-9B-v2 by nvidia
7
+
8
+ Using <a href="https://github.com/ggml-org/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/b6317">b6317</a> for quantization.
9
+
10
+ Original model: https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2
11
+
12
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) combined with a subset of combined_all_small.parquet from Ed Addario [here](https://huggingface.co/datasets/eaddario/imatrix-calibration/blob/main/combined_all_small.parquet)
13
+
14
+ Run them in [LM Studio](https://lmstudio.ai/)
15
+
16
+ Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
17
+
18
+ ## Prompt format
19
+
20
+ No prompt format found, check original model page
21
+
22
+ ## Download a file (not the whole branch) from below:
23
+
24
+ | Filename | Quant type | File Size | Split | Description |
25
+ | -------- | ---------- | --------- | ----- | ----------- |
26
+ | [NVIDIA-Nemotron-Nano-9B-v2-bf16.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-bf16.gguf) | bf16 | 17.79GB | false | Full BF16 weights. |
27
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q8_0.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q8_0.gguf) | Q8_0 | 9.46GB | false | Extremely high quality, generally unneeded but max available quant. |
28
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q6_K_L.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q6_K_L.gguf) | Q6_K_L | 9.14GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
29
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q6_K.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q6_K.gguf) | Q6_K | 9.14GB | false | Very high quality, near perfect, *recommended*. |
30
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q5_K_L.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q5_K_L.gguf) | Q5_K_L | 7.25GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
31
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q5_K_M.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q5_K_M.gguf) | Q5_K_M | 7.07GB | false | High quality, *recommended*. |
32
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q5_K_S.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q5_K_S.gguf) | Q5_K_S | 6.78GB | false | High quality, *recommended*. |
33
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q4_K_L.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q4_K_L.gguf) | Q4_K_L | 6.75GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
34
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M.gguf) | Q4_K_M | 6.53GB | false | Good quality, default size for most use cases, *recommended*. |
35
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q4_K_S.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q4_K_S.gguf) | Q4_K_S | 6.21GB | false | Slightly lower quality with more space savings, *recommended*. |
36
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q4_1.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q4_1.gguf) | Q4_1 | 5.83GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. |
37
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q3_K_XL.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q3_K_XL.gguf) | Q3_K_XL | 5.78GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
38
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q3_K_L.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q3_K_L.gguf) | Q3_K_L | 5.49GB | false | Lower quality but usable, good for low RAM availability. |
39
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q3_K_M.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q3_K_M.gguf) | Q3_K_M | 5.38GB | false | Low quality. |
40
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q4_0.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q4_0.gguf) | Q4_0 | 5.34GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. |
41
+ | [NVIDIA-Nemotron-Nano-9B-v2-IQ4_NL.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-IQ4_NL.gguf) | IQ4_NL | 5.31GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. |
42
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q2_K_L.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q2_K_L.gguf) | Q2_K_L | 5.30GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
43
+ | [NVIDIA-Nemotron-Nano-9B-v2-IQ4_XS.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-IQ4_XS.gguf) | IQ4_XS | 5.27GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
44
+ | [NVIDIA-Nemotron-Nano-9B-v2-IQ3_M.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-IQ3_M.gguf) | IQ3_M | 5.21GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
45
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q3_K_S.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q3_K_S.gguf) | Q3_K_S | 5.13GB | false | Low quality, not recommended. |
46
+ | [NVIDIA-Nemotron-Nano-9B-v2-IQ3_XS.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-IQ3_XS.gguf) | IQ3_XS | 5.13GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
47
+ | [NVIDIA-Nemotron-Nano-9B-v2-IQ3_XXS.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-IQ3_XXS.gguf) | IQ3_XXS | 5.07GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. |
48
+ | [NVIDIA-Nemotron-Nano-9B-v2-Q2_K.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q2_K.gguf) | Q2_K | 5.01GB | false | Very low quality but surprisingly usable. |
49
+ | [NVIDIA-Nemotron-Nano-9B-v2-IQ2_M.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-IQ2_M.gguf) | IQ2_M | 5.00GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
50
+ | [NVIDIA-Nemotron-Nano-9B-v2-IQ2_S.gguf](https://huggingface.co/bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/nvidia_NVIDIA-Nemotron-Nano-9B-v2-IQ2_S.gguf) | IQ2_S | 4.96GB | false | Low quality, uses SOTA techniques to be usable. |
51
+
52
+ ## Embed/output weights
53
+
54
+ Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
55
+
56
+ ## Downloading using huggingface-cli
57
+
58
+ <details>
59
+ <summary>Click to view download instructions</summary>
60
+
61
+ First, make sure you have hugginface-cli installed:
62
+
63
+ ```
64
+ pip install -U "huggingface_hub[cli]"
65
+ ```
66
+
67
+ Then, you can target the specific file you want:
68
+
69
+ ```
70
+ huggingface-cli download bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF --include "nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M.gguf" --local-dir ./
71
+ ```
72
+
73
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
74
+
75
+ ```
76
+ huggingface-cli download bartowski/nvidia_NVIDIA-Nemotron-Nano-9B-v2-GGUF --include "nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q8_0/*" --local-dir ./
77
+ ```
78
+
79
+ You can either specify a new local-dir (nvidia_NVIDIA-Nemotron-Nano-9B-v2-Q8_0) or download them all in place (./)
80
+
81
+ </details>
82
+
83
+ ## ARM/AVX information
84
+
85
+ Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass.
86
+
87
+ Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggml-org/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly.
88
+
89
+ As of llama.cpp build [b4282](https://github.com/ggml-org/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0.
90
+
91
+ Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggml-org/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase.
92
+
93
+ <details>
94
+ <summary>Click to view Q4_0_X_X information (deprecated</summary>
95
+
96
+ I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking.
97
+
98
+ <details>
99
+ <summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary>
100
+
101
+ | model | size | params | backend | threads | test | t/s | % (vs Q4_0) |
102
+ | ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: |
103
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
104
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
105
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
106
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
107
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
108
+ | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
109
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
110
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
111
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
112
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
113
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
114
+ | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
115
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
116
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
117
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
118
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
119
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
120
+ | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
121
+
122
+ Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation
123
+
124
+ </details>
125
+
126
+ </details>
127
+
128
+ ## Which file should I choose?
129
+
130
+ <details>
131
+ <summary>Click here for details</summary>
132
+
133
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
134
+
135
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
136
+
137
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
138
+
139
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
140
+
141
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
142
+
143
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
144
+
145
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
146
+
147
+ [llama.cpp feature matrix](https://github.com/ggml-org/llama.cpp/wiki/Feature-matrix)
148
+
149
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
150
+
151
+ These I-quants can also be used on CPU, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
152
+
153
+ </details>
154
+
155
+ ## Credits
156
+
157
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset.
158
+
159
+ Thank you ZeroWw for the inspiration to experiment with embed/output.
160
+
161
+ Thank you to LM Studio for sponsoring my work.
162
+
163
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski