--- license: mit datasets: - benax-rw/my_kinyarwanda_dataset language: - rw metrics: - wer base_model: openai/whisper-small pipeline_tag: automatic-speech-recognition library_name: transformers tags: - kinyarwanda - asr - whisper - low-resource - fine-tuning - benax-technologies - transformers - torchaudio - speech-recognition model-index: - name: KinyaWhisper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: KinyaWhisper Custom Dataset type: custom config: kinyarwanda metrics: - name: WER type: wer value: 51.85 --- ## 🗣️ KinyaWhisper KinyaWhisper is a fine-tuned version of OpenAI’s Whisper model for automatic speech recognition (ASR) in Kinyarwanda. It was trained on 102 manually labeled .wav files and serves as a reproducible baseline for speech recognition in low-resource, indigenous languages. ## 🔧 Usage To run inference on your own audio files using the fine-tuned KinyaWhisper model: ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration import torchaudio # Load fine-tuned KinyaWhisper model and processor from Hugging Face model = WhisperForConditionalGeneration.from_pretrained("benax-rw/KinyaWhisper") processor = WhisperProcessor.from_pretrained("benax-rw/KinyaWhisper") # Load and preprocess audio waveform, sample_rate = torchaudio.load("your_audio.wav") inputs = processor(waveform.squeeze(), sampling_rate=sample_rate, return_tensors="pt") # Generate prediction predicted_ids = model.generate(inputs["input_features"]) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] print("🗣️ Transcription:", transcription) ``` ## 🏋️ Taining Details • Model: openai/whisper-small • Epochs: 80 • Batch size: 4 • Learning rate: 1e-5 • Optimizer: Adam • Final loss: 0.00024 • WER: 51.85% ## ⚠️Limitations The model was trained on a small dataset (102 samples). It performs best on short, clear Kinyarwanda utterances and may struggle with longer or noisy audio. This is an early-stage educational model, not yet suitable for production use. ## 📚 Citation If you use this model, please cite: ```bibtex @misc{baziramwabo2025kinyawhisper, author = {Gabriel Baziramwabo}, title = {KinyaWhisper: Fine-Tuning Whisper for Kinyarwanda ASR}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/benax-rw/KinyaWhisper}}, note = {Version 1.0} } ``` ## 📬 Contact Maintained by Gabriel Baziramwabo. ✉️ gabriel@benax.rw 🔗 https://benax.rw