--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-RAdam-Large results: [] datasets: - surrey-nlp/PLOD-CW-25 - surrey-nlp/PLODv2-filtered --- # Bert-RAdam-Large This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on a subset of the PLODv2-filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.2110 - Precision: 0.7864 - Recall: 0.8598 - F1: 0.8215 - Accuracy: 0.9403 It achieves the following results on the test set: - Loss: 0.1825 - Precision: 0.8017 - Recall: 0.8902 - F1: 0.8436 - Accuracy: 0.9500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2244 | 1.0 | 500 | 0.1675 | 0.7653 | 0.8651 | 0.8121 | 0.9355 | | 0.1231 | 2.0 | 1000 | 0.1673 | 0.7433 | 0.9011 | 0.8146 | 0.9375 | | 0.0923 | 3.0 | 1500 | 0.1698 | 0.7867 | 0.8539 | 0.8189 | 0.9391 | | 0.0657 | 4.0 | 2000 | 0.1865 | 0.7857 | 0.8405 | 0.8122 | 0.9394 | | 0.0431 | 5.0 | 2500 | 0.2110 | 0.7864 | 0.8598 | 0.8215 | 0.9403 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1