sd35m-photo-1mp-Prodigy
This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3.5-medium.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
3.2
- CFG Rescale:
0.0
- Steps:
30
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip-layer guidance: skip_guidance_layers=[7, 8, 9],
Note: The validation settings are not necessarily the same as the training settings.
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 19
Training steps: 40
Learning rate: 5e-05
- Learning rate schedule: cosine
- Warmup steps: 400000
Max grad value: 0.0
Effective batch size: 12
- Micro-batch size: 4
- Gradient accumulation steps: 1
- Number of GPUs: 3
Gradient checkpointing: True
Prediction type: flow_matching (extra parameters=['shift=3.0'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Base model precision:
no_change
Caption dropout probability: 10.0%
LoRA Rank: 128
LoRA Alpha: 128.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
cheechandchong
- Repeats: 0
- Total number of images: ~18
- Total number of aspect buckets: 1
- Resolution: 512 px
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_id = 'bghira/sd35m-photo-1mp-Prodigy'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A photo-realistic image of a cat"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.2,
skip_guidance_layers=[7, 8, 9],
).images[0]
model_output.save("output.png", format="PNG")
Exponential Moving Average (EMA)
SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
- Downloads last month
- 9
Model tree for bghira/sd35m-photo-1mp-Prodigy
Base model
stabilityai/stable-diffusion-3.5-medium