--- language: - en - hi tags: - Multiturn - QnA ---
BharatGen

Model License
# AgriParam **BharatGen** introduces **AgriParam**, a domain-specialized large language model fine-tuned from **Param-1-2.9B-Instruct** on a high-quality, India-centric agriculture dataset. AgriParam is designed to understand and generate contextually rich responses for agricultural queries, farmer advisories, policy information, research insights, and rural knowledge dissemination. --- ## ๐ŸŒฑ Motivation Agriculture is the backbone of Indiaโ€™s economy, yet existing language models lack deep domain knowledge tailored to Indian contexts, languages, and cultural nuances. AgriParam bridges this gap by combining **Param-1**โ€™s bilingual capabilities with a meticulously curated agricultural knowledge base. --- ## ๐Ÿ— Model Architecture AgriParam inherits the architecture of **Param-1-2.9B-Instruct**: * **Hidden size**: 2048 * **Intermediate size**: 7168 * **Attention heads**: 16 * **Hidden layers**: 32 * **Key-value heads**: 8 * **Max position embeddings**: 2048 * **Activation**: SiLU * **Positional Embeddings**: Rotary (RoPE, theta=10000) * **Attention Mechanism**: Grouped-query attention * **Precision**: bf16-mixed * **Base model**: [Param-1-2.9B-Instruct](https://huggingface.co/bharatgenai/Param-1-2.9B-Instruct) --- ## ๐Ÿ“š Data Preparation AgriParamโ€™s training corpus was carefully crafted to ensure deep agricultural knowledge, cultural relevance, and bilingual (English-Hindi) accessibility. **Steps involved:** 1. **Source Gathering** * 17k open-source, India-focused agricultural news & information passages. 2. **Question Generation** * Generated 5 curated Q&A pairs per passage using an open-source LLM. 3. **Domain Taxonomy & Personas** * Built an exhaustive, India-specific agricultural taxonomy. * Defined farmer, policy-maker, scientist, and agri-business personas. 4. **Dataset Construction** * 2M Q&A pairs grounded in taxonomy and personas. * Complete dataset translated into Hindi. * 6M multi-turn conversation samples created. --- ## ๐Ÿ‹๏ธ Training Setup * **Base model**: Param-1-2.9B-Instruct * **Training framework**: Hugging Face + `torchrun` multi-node setup * **Prompt template**: Custom-designed for agricultural inference * **Scheduler**: Linear with warmup * **Epochs**: 3 * **Total training samples**: 12M * **Test samples**: 1.2M * **Base learning rate**: 5e-6 * **Minimum learning rate**: 0 * **Additional tokens**: ``, ``, ``, `` * **Vocab size**: 256k + 4 * **Global batch size**: 1024 * **Micro batch size**: 4 * **Gradient accumulation steps**: 32 --- ## ๐Ÿš€ Inference Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "bharatgenai/AgriParam" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=False) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.bfloat32, device_map="auto" ) # Example agricultural query user_input = "What are the best practices for organic wheat farming in Uttar Pradesh?" # 3 types of prompt # 1. Generic QA: ... # 2. Context based QA: ... ... # 3. Multi-turn conversation (supports upto 5 conversations): ... ... ... # Based on your requirements use the type of prompt (refere the above examples) prompt = f" {user_input} " # prompt = f" {user_context} {user_input} " # prompt = f" {user_input1} {user_input2} {user_input3} ..." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( **inputs, max_new_tokens=300, do_sample=True, top_k=50, top_p=0.95, temperature=0.6, eos_token_id=tokenizer.eos_token_id, use_cache=False ) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ๐Ÿ“Š Evaluation * Crop-specific Q&A * Policy & scheme awareness * Rural advisory & extension services * Bilingual (English/Hindi) capability ### **[BhashaBench-Krishi (BBK)](https://huggingface.co/datasets/bharatgenai/BhashaBench-Krishi)** | Model | BBK | BBK_English | BBK_Hindi | |-------------------------------------|-------------------|---------------------------|-------------------------| | Llama-3.2-1B | 28.91 | 29.71 | 25.21 | | Llama-3.2-1B-Instruct | 28.65 | 29.16 | 26.33 | | Llama-3.2-3B | 31.96 | 32.68 | 28.69 | | granite-3.1-3b-a800m-base | 32.17 | 33.36 | 26.70 | | sarvam-2b-v0.5 | 27.68 | 28.14 | 25.57 | | sarvam-1 | 30.24 | 30.82 | 27.57 | | **AgriParam** | **32.18** | **33.10** | **27.97** | --- ### **Subject Domain Performance** | Subject Domain | Llama-3.2-1B | Llama-3.2-1B-Instruct | Llama-3.2-3B | granite-3.1-3b-a800m-base | sarvam-2b-v0.5 | sarvam-1 | AgriParam | |----------------------------------------------------|--------------|-----------------------|--------------|---------------------------|----------------|----------|-----------| | Agri-Environmental & Allied Disciplines | 31.82 | 32.95 | 25.00 | 36.93 | 29.55 | 30.11 | 27.27 | | Agricultural Biotechnology | 31.11 | 28.63 | 34.35 | 43.13 | 30.34 | 36.64 | 36.64 | | Agricultural Chemistry & Biochemistry | 27.05 | 22.78 | 31.32 | 35.94 | 27.05 | 34.52 | 34.16 | | Agricultural Economics & Policy | 29.98 | 25.52 | 35.09 | 34.77 | 27.75 | 30.78 | 32.54 | | Agricultural Engineering & Technology | 27.46 | 26.23 | 32.79 | 30.33 | 27.46 | 29.51 | 27.87 | | Agricultural Extension Education | 30.88 | 29.46 | 32.30 | 29.84 | 28.17 | 29.97 | 34.50 | | Agricultural Microbiology | 34.23 | 36.04 | 31.53 | 34.23 | 17.12 | 26.13 | 34.23 | | Agriculture Communication | 33.07 | 28.35 | 29.53 | 34.25 | 25.59 | 33.07 | 32.68 | | Agriculture Information Technology | 30.53 | 31.58 | 44.21 | 36.84 | 27.89 | 32.11 | 27.89 | | Agronomy | 27.92 | 28.77 | 31.84 | 31.51 | 28.67 | 29.60 | 32.49 | | Animal Sciences | 25.68 | 34.46 | 36.49 | 37.84 | 35.14 | 29.05 | **40.54** | | Crop Sciences | 31.15 | 26.41 | 29.87 | 35.15 | 26.59 | 29.33 | 32.42 | | Dairy & Poultry Science | 35.96 | 31.46 | 30.34 | 44.94 | 33.71 | 32.58 | 29.21 | | Entomology | 29.02 | 27.59 | 35.49 | 29.31 | 27.59 | 27.87 | 31.75 | | Fisheries and Aquaculture | 29.41 | 41.18 | 38.24 | 26.47 | 20.59 | 14.71 | 23.53 | | General Knowledge & Reasoning | 28.44 | 27.53 | 33.13 | 32.38 | 26.17 | 30.56 | 31.92 | | Genetics and Plant Breeding | 30.59 | 30.08 | 28.02 | 29.05 | 26.99 | 31.62 | 29.82 | | Horticulture | 27.05 | 28.60 | 31.21 | 32.17 | 27.00 | 29.76 | 31.40 | | Natural Resource Management | 28.50 | 26.42 | 29.02 | 32.64 | 26.42 | 26.94 | 27.46 | | Nematology | 22.83 | 28.26 | 28.26 | 27.17 | 21.20 | 24.46 | 23.91 | | Plant Pathology | 28.97 | 30.48 | 27.96 | 29.97 | 25.44 | 33.50 | 25.44 | | Plant Sciences & Physiology | 28.68 | 31.78 | 37.98 | 26.36 | 20.93 | 30.23 | 31.01 | | Seed Science and Technology | 29.70 | 28.71 | 27.72 | 29.21 | 29.70 | 34.65 | 27.23 | | Soil Science | 31.25 | 29.92 | 31.69 | 29.99 | 27.49 | 30.21 | **34.93** | | Veterinary Sciences | 27.08 | 14.58 | 37.50 | 39.58 | 20.83 | 41.67 | **43.75** | --- ### **Question Level Difficulty** | Difficulty | Llama-3.2-1B | Llama-3.2-1B-Instruct | Llama-3.2-3B | granite-3.1-3b-a800m-base | sarvam-2b-v0.5 | sarvam-1 | AgriParam | |------------|--------------|-----------------------|--------------|---------------------------|----------------|----------|-----------| | Easy | 29.43 | 30.22 | 36.44 | 36.08 | 28.26 | 32.20 | **36.94** | | Hard | 27.72 | 26.37 | 25.61 | 26.02 | 28.01 | 27.54 | 25.91 | | Medium | 28.68 | 27.69 | 29.17 | 29.88 | 27.03 | 28.99 | 29.09 | --- ## ๐Ÿ“œ License This SFT checkpoint is released under the **BharatGen non-commercial license**.
Please refer to the [LICENSE](./LICENSE) for terms and conditions.