from transformers import PretrainedConfig class ParamBharatGenConfig(PretrainedConfig): model_type = "parambharatgen" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=256000, hidden_size=2048, intermediate_size=7168, num_hidden_layers=32, num_attention_heads=16, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.01, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=2, eos_token_id=3, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, custom_mlp_ratio=3.5, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.custom_mlp_ratio = custom_mlp_ratio super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) ParamBharatGenConfig.register_for_auto_class()