--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description Initially, Pixprompt is the first open-source small LLM, Pixprompt combines a CLIP vision encoder and GPT-2 (125M) decoder, with optional LoRA adapters for efficient fine-tuning. It was originally trained to support image + prompt → text, and now fine-tuned on a curated set of financial data and news headlines fetched dynamically from the web. This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [Sree bhargavi balija] - **Funded by [optional]:** [self] - **Shared by [optional]:** [More Information Needed] - **Model type:** [Multimodal Causal Language Model (CLIP + GPT2)] - **Language(s) (NLP):** [English] - **License:** [MIT] - **Finetuned from model [optional]:** [bhargavi909/Pixprompt] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model from transformers import GPT2LMHeadModel, GPT2Tokenizer from peft import PeftModel base = GPT2LMHeadModel.from_pretrained("bhargavi909/Pixprompt") model = PeftModel.from_pretrained(base, "./finetuned-financial-pixprompt") tokenizer = GPT2Tokenizer.from_pretrained("bhargavi909/Pixprompt") prompt = "The chart shows the impact of inflation" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] @misc{pixprompt2024, author = {Sree Bhargavi Balija}, title = {Pixprompt: A Multimodal GPT Model for Financial Text Generation}, year = {2024}, url = {https://huggingface.co/bhargavi909/Pixprompt}, } **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]