bigdoinks420518 commited on
Commit
1df45a9
·
verified ·
1 Parent(s): 864de78

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -5,13 +5,13 @@ tags:
5
  - diffusers
6
  - template:sd-lora
7
  - ai-toolkit
8
- base_model: Wan-AI/Wan2.1-T2V-14B-Diffusers
9
  license: creativeml-openrail-m
10
  inference:
11
  parameters:
12
  width: 1024
13
  height: 1024
14
- instance_prompt: 4viv4
15
  ---
16
 
17
  # my_first_lora_v1-lora
@@ -22,7 +22,7 @@ Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
22
 
23
  ## Trigger words
24
 
25
- You should use `4viv4` to trigger the image generation.
26
 
27
  ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
28
 
@@ -36,9 +36,9 @@ Weights for this model are available in Safetensors format.
36
  from diffusers import AutoPipelineForText2Image
37
  import torch
38
 
39
- pipeline = AutoPipelineForText2Image.from_pretrained('Wan-AI/Wan2.1-T2V-14B-Diffusers', torch_dtype=torch.bfloat16).to('cuda')
40
- pipeline.load_lora_weights('bigdoinks420518/my_first_lora_v1-lora', weight_name='my_first_lora_v1_000001750.safetensors')
41
- image = pipeline('4viv4').images[0]
42
  image.save("my_image.png")
43
  ```
44
 
 
5
  - diffusers
6
  - template:sd-lora
7
  - ai-toolkit
8
+ base_model: ai-toolkit/Wan2.2-T2V-A14B-Diffusers-bf16
9
  license: creativeml-openrail-m
10
  inference:
11
  parameters:
12
  width: 1024
13
  height: 1024
14
+ instance_prompt: aviv4
15
  ---
16
 
17
  # my_first_lora_v1-lora
 
22
 
23
  ## Trigger words
24
 
25
+ You should use `aviv4` to trigger the image generation.
26
 
27
  ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
28
 
 
36
  from diffusers import AutoPipelineForText2Image
37
  import torch
38
 
39
+ pipeline = AutoPipelineForText2Image.from_pretrained('ai-toolkit/Wan2.2-T2V-A14B-Diffusers-bf16', torch_dtype=torch.bfloat16).to('cuda')
40
+ pipeline.load_lora_weights('bigdoinks420518/my_first_lora_v1-lora', weight_name='my_first_lora_v1_low_noise.safetensors')
41
+ image = pipeline('aviv4').images[0]
42
  image.save("my_image.png")
43
  ```
44