Attempts to fill out the 1B3 model details that diverge from the main one.
Browse filesHere I am using: https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/smaller_models/tr11b-1B3-ml.slurm to help flesh it out.
README.md
CHANGED
@@ -120,11 +120,11 @@ Please see [the BLOOM training README](https://github.com/bigscience-workshop/bi
|
|
120 |
|
121 |
* ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions
|
122 |
|
123 |
-
*
|
124 |
|
125 |
-
*
|
126 |
|
127 |
-
* Hidden layers are
|
128 |
|
129 |
* Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))
|
130 |
|
@@ -132,12 +132,14 @@ Please see [the BLOOM training README](https://github.com/bigscience-workshop/bi
|
|
132 |
|
133 |
**Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).
|
134 |
|
135 |
-
* Hardware:
|
136 |
-
|
137 |
-
* Additional 32 A100 80GB GPUs (4 nodes) in reserve
|
138 |
-
|
139 |
-
* 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
* CPU: AMD
|
142 |
|
143 |
* CPU memory: 512GB per node
|
@@ -163,28 +165,21 @@ Please see [the BLOOM training README](https://github.com/bigscience-workshop/bi
|
|
163 |
|
164 |
#### **Training**
|
165 |
|
166 |
-
|
167 |
-
_In progress._
|
168 |
-
|
169 |
-
Current training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/)
|
170 |
-
|
171 |
- Checkpoint size:
|
172 |
|
173 |
-
-
|
174 |
|
175 |
-
- Full checkpoint with optimizer states:
|
176 |
|
177 |
-
- Training throughput:
|
178 |
|
179 |
-
- Number of epochs: 1
|
180 |
|
181 |
- Dates:
|
182 |
|
183 |
-
-
|
184 |
-
|
185 |
-
- Estimated end: 5th July, 2022
|
186 |
|
187 |
-
-
|
188 |
|
189 |
- Server training location: Île-de-France, France
|
190 |
|
|
|
120 |
|
121 |
* ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions
|
122 |
|
123 |
+
* 1.3 billion parameters:
|
124 |
|
125 |
+
* 24 layers, 16 attention heads
|
126 |
|
127 |
+
* Hidden layers are 2048-dimensional
|
128 |
|
129 |
* Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))
|
130 |
|
|
|
132 |
|
133 |
**Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).
|
134 |
|
135 |
+
* Hardware: 128 V100 80GB GPUs (16 nodes):
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
* 4 GPUs per node
|
138 |
+
|
139 |
+
* 40 CPUs per task
|
140 |
+
|
141 |
+
* 1 task per node
|
142 |
+
|
143 |
* CPU: AMD
|
144 |
|
145 |
* CPU memory: 512GB per node
|
|
|
165 |
|
166 |
#### **Training**
|
167 |
|
|
|
|
|
|
|
|
|
|
|
168 |
- Checkpoint size:
|
169 |
|
170 |
+
- Fp16 weights: 2.6GB (# params * 2)
|
171 |
|
172 |
+
- Full checkpoint with optimizer states: --
|
173 |
|
174 |
+
- Training throughput: --
|
175 |
|
176 |
+
- Number of epochs: 1
|
177 |
|
178 |
- Dates:
|
179 |
|
180 |
+
- Start: 11th March, 2022 11:42am PST
|
|
|
|
|
181 |
|
182 |
+
- End: 20 May, 2022
|
183 |
|
184 |
- Server training location: Île-de-France, France
|
185 |
|