--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - timit_asr model-index: - name: wav2vec2-base-timit-phoneme-demo-google-colab results: [] --- # wav2vec2-base-timit-phoneme-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4174 - Per: 0.1346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Per | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.2638 | 1.0040 | 500 | 2.8755 | 0.7958 | | 1.0067 | 2.0080 | 1000 | 0.6757 | 0.1643 | | 0.6595 | 3.0120 | 1500 | 0.5000 | 0.1494 | | 0.6451 | 4.0161 | 2000 | 0.4453 | 0.1398 | | 0.3795 | 5.0201 | 2500 | 0.4174 | 0.1346 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0