language: en
license: apache-2.0
datasets:
- custom
tags:
- summarization
- flan-t5
- youtube
- fine-tuned
base_model: google/flan-t5-base
model-index:
- name: Flan T5 YouTube Summarizer
results: []
πΊ T5 YouTube Summarizer
This is a fine-tuned flan-t5-base model for abstractive summarization of YouTube video transcripts. The model is trained on a custom dataset of video transcriptions and their manually written summaries.
β¨ Model Details
- Base Model: flan-t5-base
- Task: Abstractive Summarization
- Training Data: YouTube video transcripts and human-written summaries
- Max Input Length: 512 tokens
- Max Output Length: 256 tokens
- Fine-tuning Epochs: 10
- Tokenizer: T5Tokenizer (pretrained)
π§ Intended Use
This model is designed to generate short, informative summaries from long transcripts of educational or conceptual YouTube videos. It can be used for:
- Quick understanding of long videos
- Automated content summaries for blogs, platforms, or note-taking tools
- Enhancing accessibility for long-form spoken content
π How to Use
python from transformers import T5ForConditionalGeneration, T5Tokenizer
Load the model
model = T5ForConditionalGeneration.from_pretrained("bilal521/flan-t5-youtube-summarizer") tokenizer = T5Tokenizer.from_pretrained("bilal521/flan-t5-youtube-summarizer")
Define input text
text = "The video talks about coordinate covalent bonds, giving examples from..."
Preprocess and summarize
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
summary_ids = model.generate( inputs, max_length=256, min_length=80, num_beams=5, length_penalty=2.0, no_repeat_ngram_size=3, early_stopping=True )
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary)
π Evaluation
Metric | Value |
---|---|
ROUGE-1 | ~0.61 |
ROUGE-2 | ~0.27 |
ROUGE-L | ~0.48 |
Gen Len | ~187 tokens |
π Citation
If you use this model in your work, consider citing: @misc{t5ytsummarizer2025, title={Flan T5 YouTube Transcript Summarizer}, author={Muhammad Bilal Yousaf}, year={2025}, howpublished={\url{https://huggingface.co/bilal521/flan-t5-youtube-summarizer}}, }