bilal521's picture
Create README.md
240a72a verified
|
raw
history blame
2.45 kB
metadata
language: en
license: apache-2.0
datasets:
  - custom
tags:
  - summarization
  - flan-t5
  - youtube
  - fine-tuned
base_model: google/flan-t5-base
model-index:
  - name: Flan T5 YouTube Summarizer
    results: []

πŸ“Ί T5 YouTube Summarizer

This is a fine-tuned flan-t5-base model for abstractive summarization of YouTube video transcripts. The model is trained on a custom dataset of video transcriptions and their manually written summaries.


✨ Model Details

  • Base Model: flan-t5-base
  • Task: Abstractive Summarization
  • Training Data: YouTube video transcripts and human-written summaries
  • Max Input Length: 512 tokens
  • Max Output Length: 256 tokens
  • Fine-tuning Epochs: 10
  • Tokenizer: T5Tokenizer (pretrained)

🧠 Intended Use

This model is designed to generate short, informative summaries from long transcripts of educational or conceptual YouTube videos. It can be used for:

  • Quick understanding of long videos
  • Automated content summaries for blogs, platforms, or note-taking tools
  • Enhancing accessibility for long-form spoken content

πŸš€ How to Use

python from transformers import T5ForConditionalGeneration, T5Tokenizer

Load the model

model = T5ForConditionalGeneration.from_pretrained("bilal521/flan-t5-youtube-summarizer") tokenizer = T5Tokenizer.from_pretrained("bilal521/flan-t5-youtube-summarizer")

Define input text

text = "The video talks about coordinate covalent bonds, giving examples from..."

Preprocess and summarize

inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)

summary_ids = model.generate( inputs, max_length=256, min_length=80, num_beams=5, length_penalty=2.0, no_repeat_ngram_size=3, early_stopping=True )

summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary)

πŸ“Š Evaluation

Metric Value
ROUGE-1 ~0.61
ROUGE-2 ~0.27
ROUGE-L ~0.48
Gen Len ~187 tokens

πŸ“Œ Citation

If you use this model in your work, consider citing: @misc{t5ytsummarizer2025, title={Flan T5 YouTube Transcript Summarizer}, author={Muhammad Bilal Yousaf}, year={2025}, howpublished={\url{https://huggingface.co/bilal521/flan-t5-youtube-summarizer}}, }