hassonofer commited on
Commit
d88de45
·
verified ·
1 Parent(s): 0df9b05

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -8,7 +8,7 @@ license: apache-2.0
8
 
9
  # Model Card for mvit_v2_t_il-all
10
 
11
- MViTv2 image classification model. This model was trained on the `il-all` dataset (all the relevant bird species found in Israel inc. rarities).
12
 
13
  The species list is derived from data available at <https://www.israbirding.com/checklist/>.
14
 
@@ -16,12 +16,12 @@ The species list is derived from data available at <https://www.israbirding.com/
16
 
17
  - **Model Type:** Image classification and detection backbone
18
  - **Model Stats:**
19
- - Params (M): 23.9
20
- - Input image size: 384 x 384
21
  - **Dataset:** il-all (550 classes)
22
 
23
  - **Papers:**
24
- - MViTv2: Improved Multiscale Vision Transformers for Classification and Detection: <https://arxiv.org/abs/2112.01526>
25
 
26
  ## Model Usage
27
 
@@ -39,9 +39,9 @@ size = birder.get_size_from_signature(signature)
39
  # Create an inference transform
40
  transform = birder.classification_transform(size, rgb_stats)
41
 
42
- image = "path/to/image.jpeg" # or a PIL image
43
  (out, _) = infer_image(net, image, transform)
44
- # out is a NumPy array with shape of (1, num_classes)
45
  ```
46
 
47
  ### Image Embeddings
 
8
 
9
  # Model Card for mvit_v2_t_il-all
10
 
11
+ A MViTv2 image classification model. This model was trained on the `il-all` dataset, encompassing all relevant bird species found in Israel, including rarities.
12
 
13
  The species list is derived from data available at <https://www.israbirding.com/checklist/>.
14
 
 
16
 
17
  - **Model Type:** Image classification and detection backbone
18
  - **Model Stats:**
19
+ - Params (M): 23.9
20
+ - Input image size: 384 x 384
21
  - **Dataset:** il-all (550 classes)
22
 
23
  - **Papers:**
24
+ - MViTv2: Improved Multiscale Vision Transformers for Classification and Detection: <https://arxiv.org/abs/2112.01526>
25
 
26
  ## Model Usage
27
 
 
39
  # Create an inference transform
40
  transform = birder.classification_transform(size, rgb_stats)
41
 
42
+ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
43
  (out, _) = infer_image(net, image, transform)
44
+ # out is a NumPy array with shape of (1, num_classes), representing class probabilities.
45
  ```
46
 
47
  ### Image Embeddings