--- tags: - image-classification - birder - pytorch library_name: birder license: apache-2.0 --- # Model Card for nextvit_s_eu-common A Next-ViT small image classification model. This model was trained on the `eu-common` dataset containing common European bird species. The species list is derived from the Collins bird guide [^1]. [^1]: Svensson, L., Mullarney, K., & Zetterström, D. (2022). Collins bird guide (3rd ed.). London, England: William Collins. Note: A 256 x 256 variant of this model is available as `nextvit_s_eu-common256px`. ## Model Details - **Model Type:** Image classification and detection backbone - **Model Stats:** - Params (M): 31.5 - Input image size: 384 x 384 - **Dataset:** eu-common (707 classes) - **Papers:** - Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios: ## Model Usage ### Image Classification ```python import birder from birder.inference.classification import infer_image (net, model_info) = birder.load_pretrained_model("nextvit_s_eu-common", inference=True) # Note: A 256x256 variant is available as "nextvit_s_eu-common256px" # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format (out, _) = infer_image(net, image, transform) # out is a NumPy array with shape of (1, 707), representing class probabilities. ``` ### Image Embeddings ```python import birder from birder.inference.classification import infer_image (net, model_info) = birder.load_pretrained_model("nextvit_s_eu-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = "path/to/image.jpeg" # or a PIL image (out, embedding) = infer_image(net, image, transform, return_embedding=True) # embedding is a NumPy array with shape of (1, 1024) ``` ### Detection Feature Map ```python from PIL import Image import birder (net, model_info) = birder.load_pretrained_model("nextvit_s_eu-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = Image.open("path/to/image.jpeg") features = net.detection_features(transform(image).unsqueeze(0)) # features is a dict (stage name -> torch.Tensor) print([(k, v.size()) for k, v in features.items()]) # Output example: # [('stage1', torch.Size([1, 96, 96, 96])), # ('stage2', torch.Size([1, 256, 48, 48])), # ('stage3', torch.Size([1, 512, 24, 24])), # ('stage4', torch.Size([1, 1024, 12, 12]))] ``` ## Citation ```bibtex @misc{li2022nextvitgenerationvisiontransformer, title={Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios}, author={Jiashi Li and Xin Xia and Wei Li and Huixia Li and Xing Wang and Xuefeng Xiao and Rui Wang and Min Zheng and Xin Pan}, year={2022}, eprint={2207.05501}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2207.05501}, } ```