Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,172 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- image-classification
|
| 4 |
+
- birder
|
| 5 |
+
- pytorch
|
| 6 |
+
library_name: birder
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
datasets:
|
| 9 |
+
- bioscan-ml/BIOSCAN-5M
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Model Card for rdnet_t_ibot-bioscan5m
|
| 13 |
+
|
| 14 |
+
A RDNet tiny image encoder pre-trained using iBOT.
|
| 15 |
+
|
| 16 |
+
The model is primarily a feature extractor. Separately trained linear probing classification heads for various taxonomic levels (order, family, genus, species) are available for classification tasks.
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
|
| 20 |
+
- **Model Type:** Image classification and detection backbone
|
| 21 |
+
- **Model Stats:**
|
| 22 |
+
- Params (M): 22.8
|
| 23 |
+
- Input image size: 224 x 224
|
| 24 |
+
- **Dataset:** BIOSCAN-5M (pretrain split)
|
| 25 |
+
|
| 26 |
+
- **Papers:**
|
| 27 |
+
- DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs: <https://arxiv.org/abs/2403.19588>
|
| 28 |
+
- iBOT: Image BERT Pre-Training with Online Tokenizer: <https://arxiv.org/abs/2111.07832>
|
| 29 |
+
|
| 30 |
+
## Linear Probing Results
|
| 31 |
+
|
| 32 |
+
The following table shows the Top-1 Accuracy (%) achieved by training a linear classification head on top of the frozen `rdnet_t_ibot-bioscan5m` encoder.
|
| 33 |
+
The linear probing was conducted using 289,203 samples for all taxonomic levels, and the model was evaluated on the validation (14,757 samples) and test (39,373 samples) splits of the BIOSCAN-5M dataset.
|
| 34 |
+
|
| 35 |
+
| Taxonomic Level | Classes (N) | Val Top-1 Acc. (%) | Test Top-1 Acc. (%) |
|
| 36 |
+
|-----------------|-------------|--------------------|---------------------|
|
| 37 |
+
| Order | 42 | 99.36 | 99.01 |
|
| 38 |
+
| Family | 606 | 95.79 | 92.89 |
|
| 39 |
+
| Genus | 4930 | 88.09 | 78.51 |
|
| 40 |
+
| Species | 11846 | 79.74 | 65.26 |
|
| 41 |
+
|
| 42 |
+
## Unsupervised Evaluation (Adjusted Mutual Information)
|
| 43 |
+
|
| 44 |
+
The quality of the image embeddings was also evaluated intrinsically using Adjusted Mutual Information (AMI) following the setup of Lowe et al., 2024a ([An Empirical Study into Clustering of Unseen Datasets with Self-Supervised Encoders](https://arxiv.org/abs/2406.02465)):
|
| 45 |
+
|
| 46 |
+
1. Extract embeddings from the pretrained encoder.
|
| 47 |
+
1. Reduce dimensionality to 50 with [UMAP](https://arxiv.org/abs/1802.03426) (McInnes et al., 2018).
|
| 48 |
+
1. Cluster reduced embeddings using Agglomerative Clustering (Ward's method).
|
| 49 |
+
1. Compare against ground-truth taxonomic labels using AMI (Vinh et al., 2010).
|
| 50 |
+
|
| 51 |
+
The AMI score reflects how well the learned representations align with ground-truth taxonomy in an unsupervised setting.
|
| 52 |
+
|
| 53 |
+
| Taxonomic Level | AMI Score (%) |
|
| 54 |
+
|-----------------|---------------|
|
| 55 |
+
| Genus | 39.14 |
|
| 56 |
+
| Species | 26.91 |
|
| 57 |
+
|
| 58 |
+
## Model Usage
|
| 59 |
+
|
| 60 |
+
### Image Classification (with Linear Probing Head)
|
| 61 |
+
|
| 62 |
+
To use the model for classification, you must load the encoder and then load a specific pre-trained classification head for the desired taxonomic level. Heads are available for `order`, `family`, `genus`, and `species`.
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
import torch
|
| 66 |
+
import birder
|
| 67 |
+
from birder.inference.classification import infer_image
|
| 68 |
+
|
| 69 |
+
(net, model_info) = birder.load_pretrained_model("rdnet_t_ibot-bioscan5m", inference=True)
|
| 70 |
+
|
| 71 |
+
# Load a linear probing classification head (e.g., for 'family')
|
| 72 |
+
head_data = torch.load("models/rdnet_t_ibot-bioscan5m-family.head.pt")
|
| 73 |
+
|
| 74 |
+
# Reset the classifier layer and load the head weights
|
| 75 |
+
net.reset_classifier(len(head_data["class_to_idx"]))
|
| 76 |
+
net.classifier.load_state_dict(head_data["state"])
|
| 77 |
+
|
| 78 |
+
# Get the image size the model was trained on
|
| 79 |
+
size = birder.get_size_from_signature(model_info.signature)
|
| 80 |
+
|
| 81 |
+
# Create an inference transform
|
| 82 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
| 83 |
+
|
| 84 |
+
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
| 85 |
+
(out, _) = infer_image(net, image, transform)
|
| 86 |
+
# out is a NumPy array with shape of (1, N_CLASSES) for the chosen level, representing class probabilities.
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### Image Embeddings
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
import birder
|
| 93 |
+
from birder.inference.classification import infer_image
|
| 94 |
+
|
| 95 |
+
(net, model_info) = birder.load_pretrained_model("rdnet_t_ibot-bioscan5m", inference=True)
|
| 96 |
+
|
| 97 |
+
# Get the image size the model was trained on
|
| 98 |
+
size = birder.get_size_from_signature(model_info.signature)
|
| 99 |
+
|
| 100 |
+
# Create an inference transform
|
| 101 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
| 102 |
+
|
| 103 |
+
image = "path/to/image.jpeg" # or a PIL image
|
| 104 |
+
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
| 105 |
+
# embedding is a NumPy array with shape of (1, 1040)
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### Detection Feature Map
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
from PIL import Image
|
| 112 |
+
import birder
|
| 113 |
+
|
| 114 |
+
(net, model_info) = birder.load_pretrained_model("rdnet_t_ibot-bioscan5m", inference=True)
|
| 115 |
+
|
| 116 |
+
# Get the image size the model was trained on
|
| 117 |
+
size = birder.get_size_from_signature(model_info.signature)
|
| 118 |
+
|
| 119 |
+
# Create an inference transform
|
| 120 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
| 121 |
+
|
| 122 |
+
image = Image.open("path/to/image.jpeg")
|
| 123 |
+
features = net.detection_features(transform(image).unsqueeze(0))
|
| 124 |
+
# features is a dict (stage name -> torch.Tensor)
|
| 125 |
+
print([(k, v.size()) for k, v in features.items()])
|
| 126 |
+
# Output example:
|
| 127 |
+
# [('stage1', torch.Size([1, 256, 56, 56])),
|
| 128 |
+
# ('stage2', torch.Size([1, 440, 28, 28])),
|
| 129 |
+
# ('stage3', torch.Size([1, 744, 14, 14])),
|
| 130 |
+
# ('stage4', torch.Size([1, 1040, 7, 7]))]
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
## Citation
|
| 134 |
+
|
| 135 |
+
```bibtex
|
| 136 |
+
@misc{kim2024densenetsreloadedparadigmshift,
|
| 137 |
+
title={DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs},
|
| 138 |
+
author={Donghyun Kim and Byeongho Heo and Dongyoon Han},
|
| 139 |
+
year={2024},
|
| 140 |
+
eprint={2403.19588},
|
| 141 |
+
archivePrefix={arXiv},
|
| 142 |
+
primaryClass={cs.CV},
|
| 143 |
+
url={https://arxiv.org/abs/2403.19588},
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
@misc{zhou2022ibotimagebertpretraining,
|
| 147 |
+
title={iBOT: Image BERT Pre-Training with Online Tokenizer},
|
| 148 |
+
author={Jinghao Zhou and Chen Wei and Huiyu Wang and Wei Shen and Cihang Xie and Alan Yuille and Tao Kong},
|
| 149 |
+
year={2022},
|
| 150 |
+
eprint={2111.07832},
|
| 151 |
+
archivePrefix={arXiv},
|
| 152 |
+
primaryClass={cs.CV},
|
| 153 |
+
url={https://arxiv.org/abs/2111.07832},
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
@inproceedings{gharaee2024bioscan5m,
|
| 157 |
+
title={{BIOSCAN-5M}: A Multimodal Dataset for Insect Biodiversity},
|
| 158 |
+
booktitle={Advances in Neural Information Processing Systems},
|
| 159 |
+
author={Zahra Gharaee and Scott C. Lowe and ZeMing Gong and Pablo Millan Arias
|
| 160 |
+
and Nicholas Pellegrino and Austin T. Wang and Joakim Bruslund Haurum
|
| 161 |
+
and Iuliia Zarubiieva and Lila Kari and Dirk Steinke and Graham W. Taylor
|
| 162 |
+
and Paul Fieguth and Angel X. Chang
|
| 163 |
+
},
|
| 164 |
+
editor={A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang},
|
| 165 |
+
pages={36285--36313},
|
| 166 |
+
publisher={Curran Associates, Inc.},
|
| 167 |
+
year={2024},
|
| 168 |
+
volume={37},
|
| 169 |
+
url={https://proceedings.neurips.cc/paper_files/paper/2024/file/3fdbb472813041c9ecef04c20c2b1e5a-Paper-Datasets_and_Benchmarks_Track.pdf},
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
```
|