File size: 6,676 Bytes
e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 6f40440 e54fd17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Advanced Features
LLMPromptKit provides several advanced features for sophisticated prompt engineering.
## Advanced Templating
LLMPromptKit's templating system goes beyond simple variable substitution, offering conditionals and loops.
### Basic Variable Substitution
```python
from llmpromptkit import PromptTemplate
# Simple variable substitution
template = PromptTemplate("Hello, {name}!")
rendered = template.render(name="John")
# Result: "Hello, John!"
```
### Conditional Logic
```python
# Conditionals
template = PromptTemplate("""
{if is_formal}
Dear {name},
I hope this message finds you well.
{else}
Hey {name}!
{endif}
{message}
""")
formal = template.render(is_formal=True, name="Dr. Smith", message="Please review the attached document.")
casual = template.render(is_formal=False, name="Bob", message="Want to grab lunch?")
```
### Loops
```python
# Loops
template = PromptTemplate("""
Here are your tasks:
{for task in tasks}
- {task.priority}: {task.description}
{endfor}
""")
rendered = template.render(tasks=[
{"priority": "High", "description": "Complete the report"},
{"priority": "Medium", "description": "Schedule meeting"},
{"priority": "Low", "description": "Organize files"}
])
```
### Nested Structures
```python
# Combining loops and conditionals
template = PromptTemplate("""
{system_message}
{for example in examples}
User: {example.input}
{if example.has_reasoning}
Reasoning: {example.reasoning}
{endif}
Assistant: {example.output}
{endfor}
User: {query}
Assistant:
""")
rendered = template.render(
system_message="You are a helpful assistant.",
examples=[
{
"input": "What's 2+2?",
"has_reasoning": True,
"reasoning": "Adding 2 and 2 gives 4",
"output": "4"
},
{
"input": "Hello",
"has_reasoning": False,
"output": "Hi there! How can I help you today?"
}
],
query="What's the capital of France?"
)
```
## Custom Evaluation Metrics
You can create custom metrics to evaluate prompt outputs based on your specific requirements.
### Creating a Custom Metric
```python
from llmpromptkit import EvaluationMetric
class RelevanceMetric(EvaluationMetric):
"""Evaluates relevance of output to a given topic."""
def __init__(self, topics):
super().__init__("relevance", "Evaluates relevance to specified topics")
self.topics = topics
def compute(self, generated_output, expected_output=None, **kwargs):
"""
Compute relevance score based on topic presence.
Returns a float between 0 and 1.
"""
score = 0
output_lower = generated_output.lower()
for topic in self.topics:
if topic.lower() in output_lower:
score += 1
# Normalize to 0-1 range
return min(1.0, score / len(self.topics)) if self.topics else 0.0
```
### Using Custom Metrics
```python
from llmpromptkit import Evaluator, PromptManager
# Initialize components
prompt_manager = PromptManager()
evaluator = Evaluator(prompt_manager)
# Register custom metric
climate_relevance = RelevanceMetric(["climate", "temperature", "warming", "environment"])
evaluator.register_metric(climate_relevance)
# Use in evaluation
async def my_llm(prompt, vars):
# Call your LLM API here
return "Climate change is causing global temperature increases..."
results = await evaluator.evaluate_prompt(
prompt_id="abc123",
inputs=[{"topic": "climate change"}],
llm_callback=my_llm,
metric_names=["relevance"] # Use our custom metric
)
print(f"Relevance score: {results['aggregated_metrics']['relevance']}")
```
## Customizing Storage
LLMPromptKit allows you to customize where and how prompts and related data are stored.
### Custom Storage Locations
```python
# Specify a custom storage location
prompt_manager = PromptManager("/path/to/my/prompts")
# Export/import prompts
import json
# Export a prompt to a file
prompt = prompt_manager.get("abc123")
with open("exported_prompt.json", "w") as f:
json.dump(prompt.to_dict(), f, indent=2)
# Import a prompt from a file
with open("exported_prompt.json", "r") as f:
data = json.load(f)
imported_prompt = prompt_manager.import_prompt(data)
```
## LLM Integration
LLMPromptKit is designed to work with any LLM through callback functions. Here are examples of integrating with popular LLM APIs.
### OpenAI Integration
```python
import openai
from llmpromptkit import PromptManager, PromptTesting
prompt_manager = PromptManager()
testing = PromptTesting(prompt_manager)
# Configure OpenAI
openai.api_key = "your-api-key"
# OpenAI callback function
async def openai_callback(prompt, vars):
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=150
)
return response.choices[0].message.content
# Run tests with OpenAI
test_results = await testing.run_all_tests("abc123", openai_callback)
```
### Anthropic Integration
```python
import anthropic
from llmpromptkit import PromptManager, Evaluator
prompt_manager = PromptManager()
evaluator = Evaluator(prompt_manager)
# Configure Anthropic
client = anthropic.Anthropic(api_key="your-api-key")
# Anthropic callback function
async def anthropic_callback(prompt, vars):
response = client.messages.create(
model="claude-2",
messages=[{"role": "user", "content": prompt}],
max_tokens=150
)
return response.content[0].text
# Evaluate with Anthropic
eval_results = await evaluator.evaluate_prompt(
prompt_id="abc123",
inputs=[{"query": "What is machine learning?"}],
llm_callback=anthropic_callback
)
```
### Hugging Face Integration
```python
from transformers import pipeline
import asyncio
from llmpromptkit import PromptManager, VersionControl
prompt_manager = PromptManager()
version_control = VersionControl(prompt_manager)
# Set up Hugging Face pipeline
generator = pipeline('text-generation', model='gpt2')
# Hugging Face callback function
async def hf_callback(prompt, vars):
# Run synchronously but in a way that doesn't block the asyncio event loop
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(None, lambda: generator(prompt, max_length=100)[0]['generated_text'])
return result
# Use with version control
prompt = prompt_manager.create(
content="Complete this: {text}",
name="Text Completion"
)
version_control.commit(prompt.id, "Initial version")
# Test with different models by swapping the callback
```
|