GPM: Generative Password Manager
Password management is up there with cookie popups and ads, a major pain in the ass.
Turns out you don't need to save passwords, they can all be derived from a single master key.
Here's a small experiment using neural networks.
Intuition
Password managers can be seen as a deterministic function: given a target (app, website, etc) and a login ID (username, mail, etc) they produce a password.
password = manager(target, login)
Typically they just save your credentials to ensure you always get the same password.
Despite appearances, neural networks are actually deterministic too.
So the manager
function above could be a (L)LM.
In this case:
- the master key would be used to initiate the weights
- the MLP would take the login and / or target as input prompt
- the passwords would not be saved but generated as "prediction" of the model
Also, the vocabulary and model can be setup to:
- satisfy the password requirements
- have high entropy while being deterministic
- create memorable passwords like a sentence, contrary to random generation
And the NN cannot be a common / shared model, unless you are ok with typing "password" in a login field.
0. Setup The Hyper Parameters
The generative function is a MLP: it is defined by hyper-parameters.
- the seed for the random number generators
- the tensor shapes
- the input vocabulary (all the ASCII characters)
- the output vocabulary (alpha / numbers / symbols)
- the password length, which is the length of the sampling
0.1. Defining the Input Vocabulary
The inputs are projected on the ASCII table, all unicode characters are ignored.
This vocabulary is fixed, whatever the user typed:
INPUT_VOCABULARY = ''.join(chr(__i) for __i in range(128)) # all ASCII characters
0.2. Composing The Output Vocabulary
The output vocabulary dictates the composition of the model output, IE the password.
This vocabulary can contain:
- lowercase letters
- uppercase letters
- digits
- ASCII symbols, apart from the quotes
"
and'
VOCABULARY_ALPHA_UPPER = ''.join(chr(__i) for __i in range(65, 91)) # A-Z
VOCABULARY_ALPHA_LOWER = VOCABULARY_ALPHA_UPPER.lower() # a-z
VOCABULARY_NUMBERS = '0123456789' # 0-9
VOCABULARY_SYMBOLS = ''.join(chr(__i) for __i in range(33, 48) if chr(__i) not in ["'", '"']) # !#$%&\()*+,-./
It is generated from the user preferences with:
def compose(lower: bool=True, upper: bool=True, digits: bool=True, symbols: bool=False) -> str:
return sorted(set(lower * VOCABULARY_ALPHA_LOWER + upper * VOCABULARY_ALPHA_UPPER + digits * VOCABULARY_NUMBERS + symbols * VOCABULARY_SYMBOLS))
By default, it is:
OUTPUT_VOCABULARY = ''.join(compose(1, 1, 1, 0))
# 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
In the end, the meta-parameters are:
N_INPUT_DIM = len(INPUT_VOCABULARY) # all ASCII characters
N_OUTPUT_DIM = N_INPUT_DIM # placeholder, it depends on the user settings
N_CONTEXT_DIM = 8
N_EMBEDDING_DIM = 128
N_PASSWORD_DIM = 16
N_PASSWORD_NONCE = 1
0.3. Casting The Master Key Into The Seed
A naive approach is to interpret the master key as a HEX sequence, then cast into the integer seed:
def seed(key: str) -> int:
return int(bytes(key, 'utf-8').hex(), 16) % (2 ** 32) # dword
But many inputs produce the same seed:
print(seed('never seen before combination of letters'))
# 1952805491
print(seed('combination of letters'))
# 1952805491
print(b'combination of letters'.hex())
# 636f6d62696e6174696f6e206f66206c657474657273
The encoding of the string 'combination of letters' requires 22 bytes, so it is greater than 2 ** 168
. Prepending a prefix means adding a number times 2 ** 176
which leads to the same value modulo 2 ** 32
.
To separate the encoding of similar mater keys, it is first hashed using sha256:
def seed(key: str) -> int:
__hash = hashlib.sha256(string=key.encode('utf-8')).hexdigest()
return int(__hash[:8], 16) # take the first 4 bytes: the seed is lower than 2 ** 32
Now:
print(seed('never seen before combination of letters'))
# 3588870616
print(seed('combination of letters'))
# 3269272188
1. Preprocessing The Inputs
The inputs are the login information for which the user wants a password:
- login target
- login id
Before being handled to the model, they need to be preprocessed to guarantee that the output matches the user expectations.
1.1. Removing Unwanted Characters
First, the inputs should be cleaned to:
- remove spaces: they serve no purpose and are typos like
http://example. com
- remove unicode characters: many typos produce invisible control characters like
chr(2002)
Spaces can be removed with:
def remove_spaces(text: str) -> str:
return text.replace(' ', '').replace('\t', '')
1.2. Normalizing The Strings
Several variants can be used to point to the same service:
example.com
https://example.com
https://example.com/
ExamPLE.COM
So they need to be normalized with:
def remove_prefix(text: str) -> str:
__r = r'^((?:ftp|https?):\/\/)'
return re.sub(pattern=__r, repl='', string=text, flags=re.IGNORECASE)
def remove_suffix(text: str) -> str:
__r = r'(\/+)$'
return re.sub(pattern=__r, repl='', string=text, flags=re.IGNORECASE)
Pieced together:
def preprocess(target: str, login: str) -> list:
__left = remove_suffix(text=remove_prefix(text=remove_spaces(text=target.lower())))
__right = remove_spaces(text=login.lower())
return __left + '|' + __right
print(preprocess(target='example.com', login='user'))
# example.com|user
print(preprocess(target='https://example.com', login='user'))
# example.com|user
print(preprocess(target='example.com/', login='USER'))
# example.com|user
2. Encoding The Inputs
2.1. Mapping The Characters To Integers
The mapping between character and integer is a straightforward enumeration:
def mappings(vocabulary: list) -> dict:
__itos = {__i: __c for __i, __c in enumerate(vocabulary)}
__stoi = {__c: __i for __i, __c in enumerate(vocabulary)}
# blank placeholder
__blank_c = __itos[0] # chr(0)
__blank_i = 0
# s => i
def __encode(c: str) -> int:
return __stoi.get(c, __blank_i)
# i => s
def __decode(i: int) -> str:
return __itos.get(i, __blank_c)
# return both
return {'encode': __encode, 'decode': __decode}
It will remove all the characters outside the input vocabulary, EG unicode characters.
def encode(text: str, stoi: callable) -> list:
return [stoi(__c) for __c in text] # defaults to 0 if a character is not in the vocabulary
def decode(sequence: list, itos: callable) -> list:
return ''.join([itos(__i) for __i in sequence]) # defaults to the first character
2.2. Adding Entropy
With a character level embedding the input tensor would look like:
array([101, 120, 97, 109, 112, 108, 101, 46, 99, 111, 109, 124, 117, 115, 101, 114], dtype=int32)
Which means that each repetition in the input would also yield a repetition in the output password.
Just like regular transformer models, using a context as input will make each sample more unique. Instead of a single character, a sample is now composed of the N latest characters:
array([[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 101],
[ 0, 0, 0, 0, 0, 0, 101, 120],
[ 0, 0, 0, 0, 0, 101, 120, 97],
[ 0, 0, 0, 0, 101, 120, 97, 109],
[ 0, 0, 0, 101, 120, 97, 109, 112],
[ 0, 0, 101, 120, 97, 109, 112, 108],
[ 0, 101, 120, 97, 109, 112, 108, 101],
[101, 120, 97, 109, 112, 108, 101, 46],
[120, 97, 109, 112, 108, 101, 46, 99],
[ 97, 109, 112, 108, 101, 46, 99, 111],
[109, 112, 108, 101, 46, 99, 111, 109],
[112, 108, 101, 46, 99, 111, 109, 124],
[108, 101, 46, 99, 111, 109, 124, 117],
[101, 46, 99, 111, 109, 124, 117, 115],
[ 46, 99, 111, 109, 124, 117, 115, 101]], dtype=int32)
This can still be improved. As long as the process is deterministic, the input can be modified in any way.
For example, the successive ordinal values can be accumulated:
def accumulate(x: int, y: int, n: int) -> int:
return (x + y) % n
The modulo guarantees that the encoding stays within the range of the ASCII encoding.
Also the context can start from the current index, instead of ending on it. Finally the encoded input can be cycled through to create and infinite iterator:
def feed(source: list, nonce: int, dimension: int) -> iter:
__func = lambda __x, __y: accumulate(x=__x, y=__y + nonce, n=dimension) # add entropy by accumulating the encodings
return itertools.accumulate(iterable=itertools.cycle(source), func=__func) # infinite iterable
This will allow to create passwords longer than the input text.
2.3. Formatting As A Tensor
Finally, the iterator of encoded inputs is used to generate the tensor X:
def tensor(feed: 'Iterable[int]', length: int, context: int) -> tf.Tensor:
__x = [[next(feed) for _ in range(context)] for _ in range(length)]
return tf.constant(tf.convert_to_tensor(value=__x, dtype=tf.dtypes.int32))
This tensor has shape (N_PASSWORD_LENGTH, N_CONTEXT_DIM)
:
__feed = feed(source=list('kaggle.com|apehex'.encode('utf-8')), nonce=1, dimension=256)
tensor(feed=__feed, length=N_PASSWORD_DIM, context=N_CONTEXT_DIM)
# <tf.Tensor: shape=(16, 8), dtype=int32, numpy=
# array([[107, 205, 53, 157, 10, 112, 159, 3],
# [115, 225, 94, 192, 49, 151, 0, 102],
# [223, 75, 173, 21, 125, 234, 80, 127],
# [227, 83, 193, 62, 160, 17, 119, 224],
# [ 70, 191, 43, 141, 245, 93, 202, 48],
# [ 95, 195, 51, 161, 30, 128, 241, 87],
# [192, 38, 159, 11, 109, 213, 61, 170],
# [ 16, 63, 163, 19, 129, 254, 96, 209],
# [ 55, 160, 6, 127, 235, 77, 181, 29],
# [138, 240, 31, 131, 243, 97, 222, 64],
# [177, 23, 128, 230, 95, 203, 45, 149],
# [253, 106, 208, 255, 99, 211, 65, 190],
# [ 32, 145, 247, 96, 198, 63, 171, 13],
# [117, 221, 74, 176, 223, 67, 179, 33],
# [158, 0, 113, 215, 64, 166, 31, 139],
# [237, 85, 189, 42, 144, 191, 35, 147]], dtype=int32)>
Even though the input strings 'kaggle.com|apehex' had repetitions ("e" and "a") no two lines of the tensor are the same.
The process detailed here will always produce the same tensor X.
3. Creating The MLP Model
Now that all the hyper-parameters are set, creating the MLP is just a formality:
def create_model(
seed: int,
n_input_dim: int,
n_output_dim: int,
n_context_dim: int=N_CONTEXT_DIM,
n_embedding_dim: int=N_EMBEDDING_DIM,
) -> tf.keras.Model:
__model = tf.keras.Sequential()
# initialize the weights
__embedding_init = tf.keras.initializers.GlorotNormal(seed=seed)
__dense_init = tf.keras.initializers.GlorotNormal(seed=(seed ** 2) % (2 ** 32)) # different values
# embedding
__model.add(tf.keras.layers.Embedding(input_dim=n_input_dim, output_dim=n_embedding_dim, embeddings_initializer=__embedding_init, name='embedding'))
# head
__model.add(tf.keras.layers.Reshape(target_shape=(n_context_dim * n_embedding_dim,), input_shape=(n_context_dim, n_embedding_dim), name='reshape'))
__model.add(tf.keras.layers.Dense(units=n_output_dim, activation='tanh', use_bias=False, kernel_initializer=__dense_init, name='head'))
__model.add(tf.keras.layers.Softmax(axis=-1, name='softmax'))
# compile
__model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False, label_smoothing=0., axis=-1, reduction=tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE, name='loss'))
return __model
For the purpose of this POC we are using Tensorflow and Keras, but it could actually be done with basic matrix multiplications.
Numpy would be almost as convenient to use and yield the same result.
4. Sampling = Password Generation
The forward pass of the tensor X in the above model will result in the probabilities for each character in the output vocabulary.
This can be directly decoded as a string like this:
def password(model: tf.keras.Model, x: tf.Tensor, itos: callable) -> str:
__y = tf.squeeze(model(x, training=False))
__p = list(tf.argmax(__y, axis=-1).numpy())
return decode(__p, itos=itos)
Evaluation
All the operations are pieced together in the process
function:
def process(
master_key: str,
login_target: str,
login_id: str,
password_length: int,
password_nonce: int,
include_lower: bool,
include_upper: bool,
include_digits: bool,
include_symbols: bool,
input_vocabulary: str=INPUT_VOCABULARY,
model_context_dim: int=N_CONTEXT_DIM,
model_embedding_dim: int=N_EMBEDDING_DIM
) -> str:
# seed to generate the model weights randomly
__seed = seed(key=master_key)
# input vocabulary
__input_mappings = mappings(vocabulary=input_vocabulary)
__input_dim = len(input_vocabulary)
# output vocabulary
__output_vocabulary = compose(lower=include_lower, upper=include_upper, digits=include_digits, symbols=include_symbols)
__output_mappings = mappings(vocabulary=__output_vocabulary)
__output_dim = len(__output_vocabulary)
# inputs
__inputs = preprocess(target=login_target, login=login_id)
__source = encode(text=__inputs, stoi=__input_mappings['encode'])
__feed = feed(source=__source, nonce=password_nonce, dimension=__input_dim)
__x = tensor(feed=__feed, length=password_length, context=model_context_dim)
# model
__model = create_model(seed=__seed, n_input_dim=__input_dim, n_output_dim=__output_dim, n_context_dim=model_context_dim, n_embedding_dim=model_embedding_dim)
# password
return password(model=__model, x=__x, itos=__output_mappings['decode'])
We can fix the internal parameters of the model like so:
_process = functools.partial(
process,
password_length=32,
password_nonce=1,
include_lower=True,
include_upper=True,
include_digits=True,
include_symbols=False,
input_vocabulary=INPUT_VOCABULARY,
model_context_dim=N_CONTEXT_DIM,
model_embedding_dim=N_EMBEDDING_DIM)
Which makes it easier to test the password generation:
print(_process(master_key='test', login_target='huggingface.co', login_id='apehex'))
# UEkmcY3IgIjT7o0ISs7qNon66FIVT1Qi
print(_process(master_key='test', login_target='https://huggingface.co/', login_id='APEHEX'))
# UEkmcY3IgIjT7o0ISs7qNon66FIVT1Qi
print(_process(master_key='anotherkey', login_target='https://huggingface.co/', login_id='APEHEX'))
# 4IazpOJxK4aOrBfnLsWNLrsq7ftzxHfE
As expected the whole process is deterministic: calls with equivalent inputs will always yield the same password, there is no need to save it.
print(_process(master_key='verysecretpassphrase', login_target='example.com', login_id='u s e [email protected]'))
# 4ZUHYALvuXvcSoS1p9j7R64freclXKvf
print(_process(master_key='verysecretpassphrase', login_target='HTTPS://example.com/', login_id='[email protected]'))
# 4ZUHYALvuXvcSoS1p9j7R64freclXKvf
CLI
I wrapped this script in a Python CLI.
python gpm/main.py --key 'never seen before combination of letters' --target 'http://example.com' --id '[email protected]'
# YRLabEDKqWQrN6JF
The full list of parameters is the following:
Generate / retrieve the password matching the input information
optional arguments:
-h, --help show this help message and exit
--key MASTER_KEY, -k MASTER_KEY the master key (all ASCII)
--target LOGIN_TARGET, -t LOGIN_TARGET the login target (URL, IP, name, etc)
--id LOGIN_ID, -i LOGIN_ID the login id (username, email, etc)
--length PASSWORD_LENGTH, -l PASSWORD_LENGTH the length of the password (default 16)
--nonce PASSWORD_NONCE, -n PASSWORD_NONCE the nonce of the password
--lower, -a exclude lowercase letters from the password
--upper, -A exclude uppercase letters from the password
--digits, -d exclude digits from the password
--symbols, -s include symbols in the password
Improvements
This POC could be turned into a full-fledged product with:
- performance improvements:
- use the base
numpy
instead oftensorflow
- replace the model with its base weight tensors and matrix multiplications
- use the base
- more output options:
- generate the password as a bag of words
- create whole sentences / quotes
- force the use of certain characters / sub-vocabularies (like the symbols)
- an actual distribution as:
- browser extension
- binary executable (CLI)
- mobile app