bmdavis commited on
Commit
51f9232
·
1 Parent(s): 0da522d

Add README.md with model description

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🧠 Sentiment Analysis Model — DistilBERT Fine-Tuned on IMDb 🎬
2
+
3
+ This model is a fine-tuned version of [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) on the [IMDb movie review dataset](https://huggingface.co/datasets/imdb) for **binary sentiment classification** (positive/negative). It was trained using Hugging Face Transformers and PyTorch.
4
+
5
+ ## 🔍 Intended Use
6
+
7
+ This model is designed to classify movie reviews (or other English text) as **positive** or **negative** sentiment. It's ideal for:
8
+ - Opinion mining
9
+ - Social media analysis
10
+ - Review classification
11
+ - Text classification demos
12
+
13
+ ## 🧪 Example Usage
14
+
15
+ ```python
16
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
17
+ import torch
18
+
19
+ model_name = "bmdavis/my-language-model"
20
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
21
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
22
+
23
+ text = "This movie was amazing and really well-acted!"
24
+ inputs = tokenizer(text, return_tensors="pt")
25
+ outputs = model(**inputs)
26
+ prediction = torch.argmax(outputs.logits).item()
27
+
28
+ print("Sentiment:", "Positive" if prediction == 1 else "Negative")