--- license: cc-by-nc-3.0 base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: postOpTranscriptAnalyzer results: [] --- # postOpTranscriptAnalyzer This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) . It achieves the following results on the evaluation set: - Loss: 0.8360 ## Model description The purpose of this model is to analyze the performance of healthcare professionals in providing post-operative instructions, based on a transcript of their conversations. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9739 | 0.1739 | 1 | 0.9650 | | 0.8749 | 0.3478 | 2 | 0.9442 | | 0.896 | 0.6957 | 4 | 0.8696 | | 0.8791 | 1.0435 | 6 | 0.8514 | | 0.8063 | 1.3043 | 8 | 0.8326 | | 0.7643 | 1.6522 | 10 | 0.8248 | | 0.8239 | 2.0 | 12 | 0.8203 | | 0.6914 | 2.2609 | 14 | 0.8261 | | 0.6751 | 2.6087 | 16 | 0.8356 | | 0.6157 | 2.9565 | 18 | 0.8357 | | 0.5871 | 3.2174 | 20 | 0.8360 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: '' eos_token: '' unk_token: '' hub_model_id: bmezgebu/postOpTranscriptAnalyzer push_to_hub: True ```