--- base_model: airesearch/wangchanberta-base-att-spm-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: lst20-baseline-new results: [] --- # lst20-baseline-new This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1359 - Precision: 0.8427 - Recall: 0.6944 - F1: 0.7614 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1354 | 1.0 | 1274 | 0.1384 | 0.8232 | 0.6967 | 0.7547 | 0.9453 | | 0.1392 | 2.0 | 2548 | 0.1396 | 0.8570 | 0.6681 | 0.7508 | 0.9464 | | 0.1325 | 3.0 | 3822 | 0.1352 | 0.8148 | 0.7212 | 0.7651 | 0.9465 | | 0.1266 | 4.0 | 5096 | 0.1366 | 0.8536 | 0.6746 | 0.7536 | 0.9467 | | 0.1195 | 5.0 | 6370 | 0.1359 | 0.8427 | 0.6944 | 0.7614 | 0.9474 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2