File size: 180,843 Bytes
ccf48ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
---
base_model: microsoft/deberta-v3-small
datasets:
- jinaai/negation-dataset-v2
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:21900
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: temperature in modesto yesterday
  sentences:
  - Far-sightedness, also known as long-sightedness and hyperopia, is a condition
    of the eye in which light is focused behind, instead of on, the retina. This causes
    close objects to be blurry, while far objects may appear normal. As the condition
    worsens, objects at all distances may be blurred.
  - "Manor (/Ë\x88meɪnÉ\x99r/ MAY-ner) is a city in Travis County, Texas, United\
    \ States. Manor is located 12 miles northeast of Austin and is part of the Austin-Round\
    \ Rock metropolitan area. The population was 5,037 at the 2010 census. Manor is\
    \ one of the faster-growing suburbs of Austin."
  - 'Modesto Temperature Yesterday. Maximum temperature yesterday: 101 °F (at 3:53
    PM) Minimum temperature yesterday: 66 °F (at 6:53 AM) Average temperature yesterday:
    84 °F. Note: Actual official high and low records may vary slightly from our
    data, if they occured in-between our weather recording intervals...'
- source_sentence: More than 169 countries had reported over 212,000 COVID-19 cases
    before March 19 , 2020 .
  sentences:
  - As of 23 March , more than 341,000 cases of COVID-19 have been reported in 192
    countries and territories , resulting in more than 14,700 deaths and 99,000 recoveries
    .
  - As of 21 March , more than 278,000 cases of COVID-19 have been reported in over
    186 countries and territories , resulting in more than 11,500 deaths and 92,000
    recoveries.  virus seems to mostly spread between people via respiratory droplets
    .
  - As of 18 March 2020 , more than 212,000 cases of COVID-19 have been reported in
    at least 170 countries and territories , with major outbreaks in China , Iran
    and the European Union .
- source_sentence: 'Premiership

    Aberdeen 2-0 Partick Thistle

    Hamilton Academical 1-1 Kilmarnock

    Inverness Caledonian Thistle 2-2 Dundee

    Motherwell 0-3 Heart of Midlothian

    Rangers 1-1 Ross County

    Championship

    Dumbarton 2-2 St Mirren

    Dundee United 3-0 Raith Rovers

    Falkirk 2-0 Dunfermline Athletic

    Hibernian 1-1 Ayr United

    Queen of the South 3-0 Greenock Morton

    St Johnstone 2-5 Celtic'
  sentences:
  - Match reports from the weekend Scottish Premiership and Championship matches.
  - The car insurance market is "dysfunctional" and does not reward loyal customers,
    said the chief executive of Aviva, Mark Wilson.
  - A father who died after being assaulted outside a nightclub in Gwynedd has been
    named as Henry Ayabowei.
- source_sentence: Electrical energy can be converted into kinetic energy and heat
    energy by an electric motor.
  sentences:
  - Solution is the term for a homogeneous mixture of two or more substances.
  - Solution is the term for a homogeneous mixture of two or more substances.
  - Electric motors transform electrical energy into kinetic energy.
- source_sentence: when is season 2 of the ranch coming to netflix
  sentences:
  - The Ranch (TV series) All episodes are named after American country music songs,
    predominantly Kenny Chesney in part one, George Strait in part two, Tim McGraw
    in part three, and Garth Brooks in part four:[5] the first ten episodes premiered
    on April 1, 2016,[6][7] the second batch of ten episodes premiered on October
    7, 2016. In April 2016, Netflix renewed The Ranch for a second season of 20 episodes,[8][9]
    the first half of which premiered on June 16, 2017,[10] and the second half was
    released on December 15, 2017.[11]
  - The Presidential Agent series The Presidential Agent series was written by military
    author, W. E. B. Griffin. The series consists so far of eight novels, By Order
    of the President, The Hostage, The Hunters, The Shooters, Black Ops, The Outlaws,
    Covert Warriors, and Hazardous Duty. Like the rest of his novels, Griffin uses
    military time, along with the address of the place, and the chapter titles are
    never started on a separate page. The series is the author's latest.
  - Ashley Peacock In 1999, Ashley and Maxine get back together, and finally marry
    in September. Ashley also finds out that his uncle, Fred, is actually his biological
    father. Fred tells Ashley about Kathleen and her reluctance to be a mother at
    a young age. Fred also explains to Ashley that Beryl, who he believed to be his
    mother, is actually his aunt, and that Fred let her raise Ashley so he could watch
    him grow up. Ashley decides that he wants to meet his birth mother but Fred begs
    him not to, believing it would hurt Beryl. Ashley, however, tracks Kathleen down
    to her home in Oldham. He is initially very bitter towards her for abandoning
    him but they reconcile and Ashley lets Kathleen attend his and Maxine's wedding.
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.033928485348000664
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.08944249572062771
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.06296467882181725
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.08266825793291849
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.03489200141716902
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.06202473500014035
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.2554086617921545
      name: Pearson Dot
    - type: spearman_dot
      value: 0.27863958137561534
      name: Spearman Dot
    - type: pearson_max
      value: 0.2554086617921545
      name: Pearson Max
    - type: spearman_max
      value: 0.27863958137561534
      name: Spearman Max
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: NLI v2
      type: NLI-v2
    metrics:
    - type: cosine_accuracy
      value: 1.0
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.125
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 1.0
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 1.0
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 1.0
      name: Max Accuracy
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: VitaminC
      type: VitaminC
    metrics:
    - type: cosine_accuracy
      value: 0.55078125
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.9503422379493713
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6542553191489362
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.656802773475647
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.48616600790513836
      name: Cosine Precision
    - type: cosine_recall
      value: 1.0
      name: Cosine Recall
    - type: cosine_ap
      value: 0.5203148129920425
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.55078125
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 425.30816650390625
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6542553191489362
      name: Dot F1
    - type: dot_f1_threshold
      value: 262.8174743652344
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.48616600790513836
      name: Dot Precision
    - type: dot_recall
      value: 1.0
      name: Dot Recall
    - type: dot_ap
      value: 0.5120444819966403
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.5390625
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 107.76934814453125
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6542553191489362
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 271.5865478515625
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.48616600790513836
      name: Manhattan Precision
    - type: manhattan_recall
      value: 1.0
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.5208015383309144
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.55078125
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 7.050784111022949
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6507936507936508
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 17.465972900390625
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.4823529411764706
      name: Euclidean Precision
    - type: euclidean_recall
      value: 1.0
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.5175301700973289
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.55078125
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 425.30816650390625
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6542553191489362
      name: Max F1
    - type: max_f1_threshold
      value: 271.5865478515625
      name: Max F1 Threshold
    - type: max_precision
      value: 0.48616600790513836
      name: Max Precision
    - type: max_recall
      value: 1.0
      name: Max Recall
    - type: max_ap
      value: 0.5208015383309144
      name: Max Ap
---

# SentenceTransformer based on microsoft/deberta-v3-small

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) and [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
    - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
    - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
    - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
    - xsum-pairs
    - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
    - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
    - openbookqa_pairs
    - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
    - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-toytest")
# Run inference
sentences = [
    'when is season 2 of the ranch coming to netflix',
    'The Ranch (TV series) All episodes are named after American country music songs, predominantly Kenny Chesney in part one, George Strait in part two, Tim McGraw in part three, and Garth Brooks in part four:[5] the first ten episodes premiered on April 1, 2016,[6][7] the second batch of ten episodes premiered on October 7, 2016. In April 2016, Netflix renewed The Ranch for a second season of 20 episodes,[8][9] the first half of which premiered on June 16, 2017,[10] and the second half was released on December 15, 2017.[11]',
    "Ashley Peacock In 1999, Ashley and Maxine get back together, and finally marry in September. Ashley also finds out that his uncle, Fred, is actually his biological father. Fred tells Ashley about Kathleen and her reluctance to be a mother at a young age. Fred also explains to Ashley that Beryl, who he believed to be his mother, is actually his aunt, and that Fred let her raise Ashley so he could watch him grow up. Ashley decides that he wants to meet his birth mother but Fred begs him not to, believing it would hurt Beryl. Ashley, however, tracks Kathleen down to her home in Oldham. He is initially very bitter towards her for abandoning him but they reconcile and Ashley lets Kathleen attend his and Maxine's wedding.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.0339     |
| **spearman_cosine** | **0.0894** |
| pearson_manhattan   | 0.063      |
| spearman_manhattan  | 0.0827     |
| pearson_euclidean   | 0.0349     |
| spearman_euclidean  | 0.062      |
| pearson_dot         | 0.2554     |
| spearman_dot        | 0.2786     |
| pearson_max         | 0.2554     |
| spearman_max        | 0.2786     |

#### Triplet
* Dataset: `NLI-v2`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value   |
|:-------------------|:--------|
| cosine_accuracy    | 1.0     |
| dot_accuracy       | 0.125   |
| manhattan_accuracy | 1.0     |
| euclidean_accuracy | 1.0     |
| **max_accuracy**   | **1.0** |

#### Binary Classification
* Dataset: `VitaminC`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.5508     |
| cosine_accuracy_threshold    | 0.9503     |
| cosine_f1                    | 0.6543     |
| cosine_f1_threshold          | 0.6568     |
| cosine_precision             | 0.4862     |
| cosine_recall                | 1.0        |
| cosine_ap                    | 0.5203     |
| dot_accuracy                 | 0.5508     |
| dot_accuracy_threshold       | 425.3082   |
| dot_f1                       | 0.6543     |
| dot_f1_threshold             | 262.8175   |
| dot_precision                | 0.4862     |
| dot_recall                   | 1.0        |
| dot_ap                       | 0.512      |
| manhattan_accuracy           | 0.5391     |
| manhattan_accuracy_threshold | 107.7693   |
| manhattan_f1                 | 0.6543     |
| manhattan_f1_threshold       | 271.5865   |
| manhattan_precision          | 0.4862     |
| manhattan_recall             | 1.0        |
| manhattan_ap                 | 0.5208     |
| euclidean_accuracy           | 0.5508     |
| euclidean_accuracy_threshold | 7.0508     |
| euclidean_f1                 | 0.6508     |
| euclidean_f1_threshold       | 17.466     |
| euclidean_precision          | 0.4824     |
| euclidean_recall             | 1.0        |
| euclidean_ap                 | 0.5175     |
| max_accuracy                 | 0.5508     |
| max_accuracy_threshold       | 425.3082   |
| max_f1                       | 0.6543     |
| max_f1_threshold             | 271.5865   |
| max_precision                | 0.4862     |
| max_recall                   | 1.0        |
| **max_ap**                   | **0.5208** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### negation-triplets

* Dataset: [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
* Size: 1,950 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | entailment                                                                        | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.15 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.26 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.48 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
  | anchor                                                                                      | entailment                                                                                | negative                                                                                            |
  |:--------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------|
  | <code>The wound was fatal.</code>                                                           | <code>It was a deadly laceration.</code>                                                  | <code>It was not a lethal laceration.</code>                                                        |
  | <code>A woman smiles as she cuts up an identification card.</code>                          | <code>A woman is holding scissors and is going to cut a card</code>                       | <code>A woman is holding scissors and is not going to cut a card</code>                             |
  | <code>In any flea market, keep your own valuables safe pickpockets are not uncommon.</code> | <code>Make sure your safeguard your valuable items when shopping at a flea market.</code> | <code>Make sure you neglect to safeguard your valuable items when shopping at a flea market.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 1,800 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.25 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 37.43 tokens</li><li>max: 224 tokens</li></ul> |
* Samples:
  | claim                                                                   | evidence                                                                                                                           |
  |:------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
  | <code>There are more than four films in the Bourne film series .</code> | <code>`` The song `` '' Extreme Ways '' '' by musician Moby is used as the end title theme of all five films.  ''</code>           |
  | <code>The film was rated at 68 % .</code>                               | <code>Our Idiot Brother received some positive reviews following its release , garnering 68 % approval on Rotten Tomatoes .</code> |
  | <code>The film Mohenjo Daro got bad views .</code>                      | <code>The film was released worldwide on 12 August 2016 to generally negative views.</code>                                        |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 1,650 training samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence2                                                                         | sentence1                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.17 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 14.95 tokens</li><li>max: 34 tokens</li></ul> |
* Samples:
  | sentence2                                                                                                                                                     | sentence1                                                                                              |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|
  | <code>The energy transformations that occur when a candle burns is described by: chemical energy from the wax is converted into light and heat energy.</code> | <code>Which statement best describes the energy transformations that occur when a candle burns?</code> |
  | <code>Evolution that occurs over a short period of time is known as microevolution.</code>                                                                    | <code>Evolution that occurs over a short period of time is known as what?</code>                       |
  | <code>Children most likely inherit shape of earlobes from their parents.</code>                                                                               | <code>Which trait do children most likely inherit from their parents?</code>                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 1,650 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 23.68 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.16 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                             | sentence2                                                                                                                                       |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>If students do not know what the process of condensation is, you can tell them it is the opposite of evaporation. In evaporation, a liquid (like water) changes state to become a gas (water vapor). In condensation, a gas (like water vapor) changes state to become a liquid (water).</code> | <code>Evaporation is responsible for changing liquid water into water vapor.</code>                                                             |
  | <code>e. in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently.</code>    | <code>Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas</code>                   |
  | <code>Accordingly, an increase in pressure will cause an increase in density of the gas and a decrease in its volume .</code>                                                                                                                                                                         | <code>If a gas in a closed area experiences increases in pressure and decreases in temperatures, the volume of the gas will be affected.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 1,800 training samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
  |         | document                                                                            | summary                                                                           |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 45 tokens</li><li>mean: 248.2 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 25.66 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
  | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | summary                                                                                                                                                               |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Brian Martin, 57, and Christopher McMultan, 40, are alleged to have entered Sarah Gloag's home in Perthshire on 19 January.<br>They are accused of holding a knife to her throat, and tying up Mrs Gloag and her husband as well as two children.<br>The men were remanded in custody after appearing in private at Perth Sheriff Court.<br>Sarah Gloag is the step-daughter of Ann Gloag, the founder of the Stagecoach transport company.<br>The charges against Mr Martin and Mr McMultan also allege that they stole jewellery worth £200,000 and £4,000 in cash from the house.<br>Both also face a number of other charges.<br>They made no plea or declaration.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>Two men have been accused of abducting members of one of Scotland's richest families at knifepoint.</code>                                                      |
  | <code>Margaret Paterson spent almost £500,000 on designer goods and was found with more than £200,000 in cash in her West End home.<br>Paterson, 61, ran a brothel and escort service from the New Town with business partner Robert Munro, 61, who was also found guilty of the same charge.<br>They will be sentenced on 8 July.<br>Ian Goalen, 59, pleaded guilty to living off the earnings of prostitution at the High Court in Edinburgh on Monday.<br>Goalen then gave evidence against his former bosses.<br>During a nine year period, Paterson and Munro provided prostitutes all over Scotland.<br>Goalen, a former bank manager from East Lothian, acted as a driver for the working girls in Edinburgh, West Lothian, Glasgow, Aberdeen and Newcastle Upon Tyne.<br>However, it came to an end when police raided their premises in Edinburgh's Grosvenor Street in September 2011.<br>Officers found sex toys, designer shoes and evidence which showed Paterson had gone on a £461,604 spending spree in some of Edinburgh's most exclusive shops.<br>Detectives found credit card records which detailed how she bought luxury items from Harvey Nichols, Louis Vuitton and Mulberry.<br>She also purchased health care from the Spire hospital in Murrayfield, Edinburgh.<br>After conviction on Monday, temporary judge Michael O'Grady QC said: "These are serious offences."<br>The trio were convicted of proceeds of crime and immoral earnings charges after a month-long trial at the High Court in Edinburgh.<br>Details can only now be reported as Judge O'Grady passed a contempt of court order at the start of proceedings prohibiting reports of it until the conclusion of the trial.<br>The jury spent three hours deliberating their verdict. They then returned unanimous verdicts on all charges.</code> | <code>An Edinburgh woman who made hundreds of thousands of pounds running a national prostitution racket has been found guilty of living off immoral earnings.</code> |
  | <code>Since taking charge in 1999, the 61-year-old has led Britain to four successive Olympic team medals, as well as five European team titles.<br>"His knowledge, experience and advice will be sorely missed," said British Equestrian Federation performance director Dan Hughes.<br>The BEF will start the search for a new performance manager later this year.<br>Breisner said: "Having decided after London 2012 that I would step down as eventing performance manager following the Rio 2016 Olympics, now is the time to start the process of appointing my successor.<br>"However, my full concentration and focus remains on our preparations for Rio."</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>Great Britain eventing team boss Yogi Breisner will step down from his role after this summer's Olympics in Rio.</code>                                         |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 1,650 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.18 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 84.6 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                    | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  |:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Molecules in the gas phase can collide with the liquid surface and reenter the liquid via what?</code> | <code>pressure above the liquid. Molecules in the gas phase can collide with the liquid surface and reenter the liquid via condensation. Eventually, a steady state is reached in which the number of molecules evaporating and condensing per unit time is the same, and the system is in a state of dynamic equilibrium. Under these conditions, a liquid exhibits a characteristic equilibrium vapor pressure that depends only on the temperature. We can express the nonlinear relationship between vapor pressure and temperature as a linear relationship using the Clausius–Clapeyron equation. This equation can be used to calculate the enthalpy of vaporization of a liquid from its measured vapor pressure at two or more temperatures. Volatile liquids are liquids with high vapor pressures, which tend to evaporate readily from an open container; nonvolatile liquids have low vapor pressures. When the vapor pressure equals the external pressure, bubbles of vapor form within the liquid, and it boils. The temperature at which a substance boils at a pressure of 1 atm is its normal boiling point.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  | <code>What fluid is most prevalent in your body?</code>                                                      | <code>Reporting Scientific Work Whether scientific research is basic science or applied science, scientists must share their findings for other researchers to expand and build upon their discoveries. Communication and collaboration within and between sub disciplines of science are key to the advancement of knowledge in science. For this reason, an important aspect of a scientist’s work is disseminating results and communicating with peers. Scientists can share results by presenting them at a scientific meeting or conference, but this approach can reach only the limited few who are present. Instead, most scientists present their results in peer-reviewed articles that are published in scientific journals. Peer-reviewed articles are scientific papers that are reviewed, usually anonymously by a scientist’s colleagues, or peers. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research described in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings. The experimental results must be consistent with the findings of other scientists. There are many journals and the popular press that do not use a peer-review system. A large number of online openaccess journals, journals with articles available without cost, are now available many of which use rigorous peer-review systems, but some of which do not. Results of any studies published in these forums without peer review are not reliable and should not form the basis for other scientific work. In one exception, journals may allow a researcher to cite a personal communication from another researcher about unpublished results with the cited author’s permission.</code> |
  | <code>What is the diffusion of water known as?</code>                                                        | <code>Osmosis is the special case of the diffusion of water. It's an important means of transport in cells because the fluid inside and outside cells is mostly water. Water can pass through the cell membrane by simple diffusion, but it can happen more quickly with the help of channel proteins. Water moves in or out of a cell by osmosis until its concentration is the same on both sides of the cell membrane.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 1,650 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 11.41 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 34.99 tokens</li><li>max: 62 tokens</li></ul> |
* Samples:
  | sentence1                                                         | sentence2                                                                                                                                                                        |
  |:------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what causes acid rain?</code>                               | <code>the emission of sulfur dioxide causes acid rain. The sulfur dioxide is converted into sulfuric acid.. emissions cause acid rain </code>                                    |
  | <code>Plant reproduction often requires what?</code>              | <code>plant reproduction often requires pollen. Honeybees and other bees transfer the pollen.. Plant reproduction often requires honeybees. </code>                              |
  | <code>Water vapor condensing in clouds usually cause what?</code> | <code>water vapor condensing in clouds causes rain. Heavy rain or thunder storms usually cause flash floods.. Water vapor condensing in clouds usually cause flash floods</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 1,500 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                         | fact                                                                             |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.8 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.5 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
  | question                                                                     | fact                                                                                  |
  |:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
  | <code>What is animal competition?</code>                                     | <code>if two animals eat the same prey then those animals compete for that pey</code> |
  | <code>If you wanted to make a metal bed frame, where would you start?</code> | <code>alloys are made of two or more metals</code>                                    |
  | <code>Places lacking warmth have few what</code>                             | <code>cold environments contain few organisms</code>                                  |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 1,650 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.62 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 77.34 tokens</li><li>max: 247 tokens</li></ul> |
* Samples:
  | sentence1                                      | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:-----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is thickening of the sinuses</code> | <code>Sinusitis is an inflammation, thickening, and swelling of the normal tissue called mucosa, which lines all the sinuses.This same type of tissue lines all the passages of your nose as well as the small channels which connect the nose and sinuses.These channels, or ostiomeatal complex, which is pictured above with the gray shading, can become blocked by swollen tissue.his same type of tissue lines all the passages of your nose as well as the small channels which connect the nose and sinuses. These channels, or ostiomeatal complex, which is pictured above with the gray shading, can become blocked by swollen tissue.</code> |
  | <code>what is the d block element</code>       | <code>D-block elements: the transition metals in the middle of the periodic table D-electron: responsible for bonding and reactivity Electron configuration: arrangement of electrons in the orbitals of metals</code>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>how much is airless spray machine</code> | <code>17 The Basics-An Oeriew of Airless Sprayers The Basics-An Oeriew of Airless Sprayers 18 Using a worn tip wastes paint and labor Assume that paint costs $10 per gallon, labor costs $18 an hour, and the contractor sprays 5 gallons of paint per hour.5 The Basics-An Oeriew of Airless Sprayers The Basics-An Oeriew of Airless Sprayers 36 The general purpose of the packings is to create a seal and direct fluid flow. There are two sets of packings, throat and piston: Throat packings seal the displacement rod to the top of the pump cylinder.</code>                                                                                  |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,650 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.85 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 134.91 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                       | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:----------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>where was the movie cahill us marshal filmed</code>       | <code>Cahill U.S. Marshal The film was produced by John Wayne's production company Batjac Productions and shot on location in Durango, Mexico.[5]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | <code>where do lymph vessels join the circulatory system</code> | <code>Lymphatic vessel Rhythmic contraction of the vessel walls through movements may also help draw fluid into the smallest lymphatic vessels, capillaries. If tissue fluid builds up the tissue will swell; this is called edema. As the circular path through the body's system continues, the fluid is then transported to progressively larger lymphatic vessels culminating in the right lymphatic duct (for lymph from the right upper body) and the thoracic duct (for the rest of the body); both ducts drain into the circulatory system at the right and left subclavian veins. The system collaborates with white blood cells in lymph nodes to protect the body from being infected by cancer cells, fungi, viruses or bacteria. This is known as a secondary circulatory system.</code> |
  | <code>who played daniel cleaver in bridget jones diary</code>   | <code>Bridget Jones's Diary (film) Bridget Jones's Diary is a 2001 romantic comedy film directed by Sharon Maguire and written by Richard Curtis, Andrew Davies, and Helen Fielding. It is based on Fielding's 1996 novel of the same name, which is a reinterpretation of Jane Austen's Pride and Prejudice. The adaptation stars Renée Zellweger as Bridget, Hugh Grant as the caddish Daniel Cleaver, and Colin Firth as Bridget's "true love", Mark Darcy. Production began in August 2000 and ended in November 2000, and took place largely on location in London and the Home Counties. The film premiered on 4 April 2001 in the United Kingdom and was released to theatres on 13 April 2001 simultaneously in the United Kingdom and in the United States.</code>                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 1,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 15.52 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 454.14 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                      | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:---------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Sarah Ferguson became Duchess of where?</code>           | <code>Sarah Ferguson - Duchess - Biography.com Sarah Ferguson Duchess of York Sarah Ferguson is the ex-wife of Britain's Prince Andrew and is also a children's book author and film producer. IN THESE GROUPS Sarah Ferguson - Royal Wedding (TV-14; 0:27) An inside look at the royal wedding between Sarah Ferguson and Prince Andrew. Synopsis Born on October 15, 1959 in London, England, Sarah Ferguson married Britain’s Prince Andrew in 1986. The couple divorced ten years later amidst much media tumult. Ferguson has since written children’s books, served as a Weight Watchers representative and done film production work. She has continued to be the object of media scrutiny, having been taped allegedly selling access to her ex-husband. Early Years Duchess Sarah Margaret Ferguson was born on October 15, 1959, in London, England. The second daughter of Major Ronald Ivor Ferguson, Sarah had a privileged English upbringing, attending private boarding school and becoming an accomplished horseback rider. Her father worked as manager of the Prince of Wales' polo team, so Sarah was acquainted with members of the Royal Family from a young age. Her parents divorced when she was 13 and after graduating from secretarial college, Sarah worked for a public relations firm, an art gallery and a publishing company. Duchess of York In 1985, Sarah met Prince Andrew, the Duke of York. The couple married the following year in Westminster Abbey and had two children, Beatrice and Eugenie. Dubbed "Fergie" by the press, Sarah was often criticized for her extravagant lifestyle and outspoken manner. Marriage trouble began to plague the couple, which is often attributed to Prince Andrew's long trips away while serving in the Royal Navy. In 1992, the couple separated, eventually divorcing in 1996 but continuing to live together in separate living quarters. The Duchess of York hosted her own short-lived talk show and appeared in a string of commercials during the 1990s for Weight Watchers. She is the author of an autobiography, some dieting guides and several children's books. Fact Check We strive for accuracy and fairness. If you see something that doesn't look right, contact us ! Citation Information</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  | <code>Who wrote the words for My Fair Lady and Camelot?</code> | <code>Frederick Loewe Dies at 86 - Wrote 'My Fair Lady' Score - NYTimes.com Frederick Loewe Dies at 86; Wrote 'My Fair Lady' Score By STEPHEN HOLDEN Published: February 15, 1988 Frederick (Fritz) Loewe, the composer who with his longtime lyricist partner Alan Jay Lerner created the scores for ''My Fair Lady,'' ''Camelot,'' ''Paint Your Wagon,'' ''Brigadoon,'' and ''Gigi,'' died yesterday in Palm Springs, Calif.. He was 86 years old. The cause of death was cardiac arrest, according to John F. Morris, an artist and longtime friend of Mr. Loewe. Among the most famous songs Mr. Loewe wrote with Mr. Lerner, who died in June 1986, were ''Almost Like Being in Love,'' ''I Could Have Danced All Night,'' ''On the Street Where You Live,'' ''I've Grown Accustomed to Her Face,'' ''If Ever I Would Leave You,'' ''Gigi,'' and ''Thank Heaven for Little Girls.'' The team's finest songs are marked by a contemporary conversational fluency and precision of phrase joined to a graceful Old World melodicism that looks back often wistfully to the turn-of-the-century operetta. Lerner and Loewe, whose creative chemistry was comparable to that of Rodgers and Hammerstein, Dietz and Schwartz, and George and Ira Gershwin, were a less likely pairing than most other Broadway theatrical teams. Seventeen years older than his New York-born collaborator, Mr. Loewe came from the world of European operetta and in 1924 moved to the United States, where he struggled for years to gain a foothold in the musical theater. The collaboration, which began inauspiciously in 1942, culminated 14 years later with ''My Fair Lady,'' a Broadway show that is widely regarded as the 50's Broadway musical at the pinnacle of perfection. For Rex Harrison, the nonsinging actor who played the role of Henry Higgins, Mr. Loewe invented melodies that matched to perfection his caustic, supercilious delivery. For Julie Andrews, who played the cockney girl whom Higgins turns into a lady, his melodic style extended from the clang of English music hall to the elegance of Straussian waltzes. Soloist With Berlin Symphony Frederick Loewe was born in Berlin on June 10, 1901. His father was Edmund Loewe, a well-known Viennese tenor who created the role of Prince Danilo in ''The Merry Widow'' in 1906. A skillful pianist by the age of 4, Mr. Loewe studied the instrument in Berlin with Ferruccio Busoni and Eugene d'Albert, and worked on composition and orchestration with Emil Nikolaus von Reznicek. At 13, he became the youngest piano soloist to appear with the Berlin Symphony Orchestra. He also began writing songs at a young age, composing the tunes for a music hall sketch in which his father toured Germany. At 15, he wrote ''Katrina,'' a popular song that became an enormous hit across Europe. Mr. Loewe's early songwriting success gave him the confidence to move to the United States in 1924. He gave a concert at Town Hall, followed by an engagement at the Rivoli Theater. But hampered by a tenuous command of the English language and a musical sensibility that was considered not ''American'' enough, he failed to achieve the success he had anticipated. To support himself, he took a succession of odd jobs, from busboy to riding instructor to prizefighter, and even worked out West for several years, as a cowpuncher and a mail carrier. On returning to New York, he played the piano in beer halls and the organ in a movie house, but lost the latter job with the advent of talking pictures. Mr. Loewe married Ernestine Zerline in 1931; they had no children and they were divorced in 1957. To make contact with the musical theater world, he joined the Lambs Club, and in 1935 he finally sold his first song to Broadway. He earned $25 for the tune, ''Love Tiptoed Through My Heart,'' which Dennis King sang in a show called ''Petticoat Fever.'' The following year, another of his songs, ''A Waltz Was Born in Vienna,'' was interpolated into the unsuccessful revue ''The Little Show.'' In 1937, he and Earle Crooker collaborated on a musical, ''Salute to Spring,'' for the St. Louis Opera. And in 1938, he composed his first full</code> |
  | <code>Where was golf's 1977 US Open held?</code>               | <code>1977 US Open Golf Tournament The 1977 U.S. Open was the 77th time the tournament was played. Winner: Hubert Green, 278 Where it was played: Southern Hills Country Club in Tulsa, Oklahoma Tournament dates: June 16-19, 1977 Leader after first round: Larry Nelson, Tom Purtzer, Grier Jones, Florentino Molina, Hubert Green, Rod Funseth and Terry Diehl, 69 Leader after second round: Hubert Green, 136 Leader after third round: Hubert Green, 208 Notable Notes: Hubert Green held a one-stroke lead entering the final round. But after making birdies on holes 12 and 14, Green was informed that a death threat had been made against him by phone, the caller saying he was going to shoot Green on the course. Was it a serious threat? It was taken seriously, anyway: police walked along with Green, and Green walked apart from his fellow competitors. How did Green react? He birdied the two holes immediately after being informed of the threat and won by a stroke. Final Scores</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 1,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.47 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.28 tokens</li><li>max: 155 tokens</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                                                                                                                                                                                                                                                                                                     |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>can you see who viewed your post on facebook?</code> | <code>To view the analytics of all your posts at once, click on “Insights” on the menu at the top of the page. Under the “Reach” column, you can see how many people have viewed each of your posts.</code>                                                                                                                                   |
  | <code>would a brother and sister have the same dna?</code> | <code>Because of recombination, siblings only share about 50 percent of the same DNA, on average, Dennis says. So while biological siblings have the same family tree, their genetic code might be different in at least one of the areas looked at in a given test. That's true even for fraternal twins.</code>                             |
  | <code>will government shutdown affect va pensions?</code>  | <code>Military Retirees and Survivor Benefit Plan recipients would, during a shutdown, still receive their pension checks as the funding for these benefits is NOT tied to Congress's funding bill. After previous shutdowns, Veteran Affairs lobbied Congress to fund the VA on a two-year budget cycle which exempts the department.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 1,950 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.78 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.81 tokens</li><li>max: 56 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                          | sentence2                                                                                                                            |
  |:-----------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Regionally , Australian cycads are the least at risk , as they are locally low and habitat fragmentation is common .</code>  | <code>Regionally , Australian Cycads are the least vulnerable , as they are locally low and habitat fragmentation is common .</code> |
  | <code>She is currently recording and producing music for other artists and also writing solo tracks under the name Tobora .</code> | <code>She is currently recording and producing music for other artists and writing solo pieces under the name Tobora .</code>        |
  | <code>The original algorithm , however , would divide the new interval into a smaller and a larger subinterval in Step 4 .</code>  | <code>However , the original algorithm would divide the new interval in step 4 into a smaller and a larger partial interval .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

### Evaluation Datasets

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 108 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.36 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.11 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
  | claim                                                                               | evidence                                                                                                                                                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Dragon Con had over 5000 guests .</code>                                      | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code>                                                                                                          |
  | <code>COVID-19 has reached more than 185 countries .</code>                         | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code>                                                                                                                                                                                                   |
  | <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### negation-triplets

* Dataset: [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
* Size: 64 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | entailment                                                                         | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 13.84 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 13.28 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 13.48 tokens</li><li>max: 21 tokens</li></ul> |
* Samples:
  | anchor                                                                                | entailment                                                         | negative                                                                   |
  |:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------|:---------------------------------------------------------------------------|
  | <code>A very big teddy bear is next to a woman.</code>                                | <code>A smiling woman at work with a life size teddy bear</code>   | <code>An unhappy woman at work with a tiny teddy bear</code>               |
  | <code>Part of train car with a door to the rear connected to the car behind it</code> | <code>A train with a striped door waiting on a train track.</code> | <code>A train with a door without stripes waiting on a train track.</code> |
  | <code>Full grown cat laying down and sleeping on top of a car. </code>                | <code>A cat napping on a red car in a driveway.</code>             | <code>A cat not napping on a red car in a driveway.</code>                 |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 54 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.81 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                     | sentence2                                                                              |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>humans normally have 23 pairs of chromosomes.</code>                                                                                                                                    | <code>Humans typically have 23 pairs pairs of chromosomes.</code>                      |
  | <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code>                                                                                       | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
  | <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code>     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
  |         | document                                                                             | summary                                                                            |
  |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                             |
  | details | <ul><li>min: 61 tokens</li><li>mean: 245.66 tokens</li><li>max: 398 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 25.88 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | summary                                                                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Defence Secretary Philip Hammond also said new F-35 Lightning jets would be flying from the base in 2018.<br>After Mr Hammond's briefing Elizabeth Truss, Conservative MP for South West Norfolk, said the development would boost job opportunities.<br>It is also the culmination of a long campaign to keep the base open.<br>Four years ago RAF Marham's future was under threat as plans favoured a transfer of aircraft and facilities to RAF Lossiemouth in Scotland.<br>Ms Truss welcomed the new announcement and said more than 5,000 people were now employed at the base by the RAF and contractors.<br>"Many of these people are highly skilled in disciplines like engineering," she said.<br>"They now have an opportunity to provide maintenance facilities for other countries' aircraft and this will create even more jobs.<br>"Already we know the base is protected until 2040 when the strike fighter goes out of service.<br>"The base is hugely important to the local community as the biggest employer in south west Norfolk with a variety of jobs in many skilled disciplines."</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <code>RAF Marham in Norfolk is to become the European maintenance hub for the new generation of strike and fighter aircraft deployed around Europe.</code> |
  | <code>Police were called to Pier Street, Ventnor, on the Isle of Wight, shortly after midnight to reports a 57-year-old man had been assaulted.<br>Nick Medlin was pronounced dead at the scene. His family said they were "completely devastated".<br>Two men from the island, aged 31 and 32 have been arrested on suspicion of murder.<br>A third man, aged 26, was released on bail pending further inquiries.<br>Mr Medlin, a father-of-two, played bass in a punk band called Manufactured Romance.<br>In a statement released through police, his family said: "We are completely devastated and totally heartbroken by the tragic death of Nick on Christmas Eve.<br>"The family wishes to thank everyone for their kind tributes and ask for privacy to grieve at this very sad time."<br>Hampshire Constabulary has appealed witnesses to come forward.<br>Det Ch Insp Dave Brown said: "Investigations are continuing today as we work to establish the exact circumstances of this man's death.<br>"We would like to speak to anyone who was in or in the vicinity of the Rose Inn on Christmas Eve night."<br>A prison staff blogger, called Know The Danger, posted on Facebook: "Everybody loved Nick Medlin and respected him, and I can say hand on heart he was one of the best officers I have ever worked with in over thirty years. A true professional in every way."<br>A section of Pier Street was cordoned off for much of Christmas Day but has since reopened.</code>                                                                                                                                                                                         | <code>Family and friends have paid tribute to a prison officer killed on a night out in the early hours of Christmas Day.</code>                           |
  | <code>The Kirkcaldy side sealed a Premiership play-off quarter-final spot after seven wins from their last 10 games.<br>"The remit this year was just to try and consolidate the club in the division and improve the squad," McKinnon told BBC Radio Scotland.<br>"The play-offs, with the opportunity of the Premiership, is incredible."<br>Rovers will play either Hibernian or Falkirk over two legs in the first stage of the promotion play-offs on 4 and 7 May.<br>Bairns boss Peter Houston has already stated that he is eager to finish second so they avoid the Stark's Park side in that contest.<br>"It's nice to hear them say that because we feel going into these games that we're definitely the underdogs," said McKinnon.<br>"We don't have anything to lose, so anything from now on is a bonus and they should be very competitive games.<br>"I think we're the form team in the league right now, ahead of Rangers.<br>"Anyone coming to play us over two legs is going to find it very difficult. There's more pressure on Hibs and Falkirk to get into the Premiership than there is on us, but that's not to say we won't be giving everything."<br>Raith have not been in Scotland's top flight since 1997 and former Brechin City manager McKinnon is confident his players can handle the challenge ahead.<br>"We've assembled a good squad," he said. "I heard [Hibs boss] Alan Stubbs talking about big players in his dressing room; we're very similar.<br>"We've got winners and their focus now that we're in the play-offs is to try and get in the Premiership. As a team we're going to give it everything we can to try and achieve that."</code> | <code>Raith Rovers manager Ray McKinnon says it would be "incredible" if they returned to the top flight for the first time in almost 20 years.</code>     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.24 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 95.92 tokens</li><li>max: 407 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                      | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:-------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>In the lens makers' equation, diverging lenses and virtual images are associated with what kinds of numbers?</code>      | <code>When using the lens makers equation, remember that real things get positive numbers and virtual things get negative numbers. Thus, diverging lenses and virtual images get negative numbers. The object distance is always positive.</code>                                                                                                                                                                                 |
  | <code>Farsightedness, or hyperopia, is the condition in which distant objects are seen clearly, but nearby objects are?</code> | <code>Farsightedness, or hyperopia, is the condition in which distant objects are seen clearly, but nearby objects are blurry. It occurs when the eyeball is shorter than normal. This causes images to be focused in back of the retina. Hyperopia can be corrected with convex lenses. The lenses focus images farther forward in the eye, so they are on the retina instead of behind it.</code>                               |
  | <code>What must replicate in the cell cycle before meiosis i takes place?</code>                                               | <code>Meiosis I begins after DNA replicates during interphase of the cell cycle. In both meiosis I and meiosis II , cells go through the same four phases as mitosis - prophase, metaphase, anaphase and telophase. However, there are important differences between meiosis I and mitosis. The eight stages of meiosis are summarized below. The stages will be described for a human cell, starting with 46 chromosomes.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 11.12 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 34.98 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
  | sentence1                                                                       | sentence2                                                                                                                                                     |
  |:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are not cells</code>                                                 | <code>Viruses are not cells.. Examples include influenza, rabies, HIV, and Herpes viruses.. rabies are not cells</code>                                       |
  | <code>What are broken down by water?</code>                                     | <code>mechanical weathering is when rocks are broken down by mechanical means. Water is a mechanical weathering force.. rocks are broken down by water</code> |
  | <code>This process is always more complex in eukaryotes than prokaryotes</code> | <code>Cell division is more complex in eukaryotes than prokaryotes.. Mitosis is cell division.. Eukaryotes have more complex mitosis than prokaryotes.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | fact                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | question                                                               | fact                                                                         |
  |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code>                      |
  | <code>What creates a valley?</code>                                    | <code>a valley is formed by a river flowing</code>                           |
  | <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.62 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 71.45 tokens</li><li>max: 153 tokens</li></ul> |
* Samples:
  | sentence1                                           | sentence2                                                                                                                                                                                                                                                                                                                                                             |
  |:----------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>definition subsidy</code>                     | <code>A subsidy is a form of financial aid or support extended to an economic sector (or institution, business, or individual) generally with the aim of promoting economic and social policy.</code>                                                                                                                                                                 |
  | <code>cost of attending truck driving school</code> | <code>Truck driving school cost can run you anywhere from $1,200 to over $10,000 – depending on the CDL class type, city and state you live in, college or independent school you go to, and how many hours of training. In order to become a truck driver you must have the proper training, as commercial vehicles can be much more difficult to navigate.</code> |
  | <code>causes of jerking when sleeping</code>        | <code>According to the National Institute of Neurological Disorders and Stroke (NINDS), the sudden, involuntary jerking of a muscle or group of muscles while drifting off to sleep is called myoclonus. It is caused by sudden muscle contractions, also known as positive myoclonus, or muscle relaxation, which is referred to as negative myoclonus.</code>       |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.41 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 132.54 tokens</li><li>max: 374 tokens</li></ul> |
* Samples:
  | sentence1                                                           | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:--------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>where is the summer palace in st petersburg</code>            | <code>Catherine Palace The Catherine Palace (Russian: Екатерининский дворец, Yekaterininskiy dvorets) is a Rococo palace located in the town of Tsarskoye Selo (Pushkin), 30 km south of St. Petersburg, Russia. It was the summer residence of the Russian tsars.</code>                                                                                                                                                                                                                                                                                                                                                                                                             |
  | <code>when did the olsen twins start full house</code>              | <code>Mary-Kate and Ashley Olsen In 1987, at the age of six months, the twins were cast in the role of Michelle Tanner on the ABC sitcom Full House. They began filming at nine months old. In order to comply with child labor laws that set strict limits on how long a child actor may work, the sisters took turns playing the role. The Olsens continued to portray Michelle throughout the show's run, which concluded in 1995.</code>                                                                                                                                                                                                                                          |
  | <code>when did harry potter and the deathly hollows come out</code> | <code>Harry Potter and the Deathly Hallows Harry Potter and the Deathly Hallows is a fantasy novel written by British author J. K. Rowling and the seventh and final novel of the Harry Potter series. The book was released on 21 July 2007, ending the series that began in 1997 with the publication of Harry Potter and the Philosopher's Stone. It was published by Bloomsbury Publishing in the United Kingdom, in the United States by Scholastic, and in Canada by Raincoast Books. The novel chronicles the events directly following Harry Potter and the Half-Blood Prince (2005), and the final confrontation between the wizards Harry Potter and Lord Voldemort.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 119 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                                |
  | details | <ul><li>min: 8 tokens</li><li>mean: 15.39 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 105 tokens</li><li>mean: 481.03 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                   | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>All children, except one, grow up is the opening line from which famous story?</code> | <code>Peter Pan is the book with the nation's favourite opening line | Daily Mail Online Peter Pan's opening line of 'All children, except one, grow up', is the nation's most memorable Peter Pan is the book with the nation's favourite opening line, according to a new poll. 'All children, except one, grow up,' wrote JM Barrie in his children's classic which scooped 20per cent of the vote in a poll commissioned to mark World Book Day next month. But it's not just childhood fairytales that adults have fond memories of, as the opening lines from classic 19th Century novel A Tale of Two Cities by Charles Dickens came second place, while George Orwell's 1984 completed the top three. However, the first words of 50 Shades of Grey did little to inspire as just one in 20 (five per cent) were wooed by EL James' opening line. One in five of those polled admitted they will put a book down if the first line isn't engaging. However, one in four (25per cent) said they will continue reading a novel to the end even if they don't enjoy it and, with complete disregard for the opening line, 15per cent admit jumping to the last chapter first to find out a book's ending. When it comes to reading with their children, one in eight parents (12per cent) say youngsters will switch off if a book doesn't capture their imagination quickly, and one in 10 are forced to adopt the characters' voices to make reading more enjoyable. Parents know when they deserve an Oscar, as one in seven children (14per cent) will enjoy a book so much that they will read it again and 21per cent of people admit they've used a line from a book as their own in order to impress a member of the opposite sex. RELATED ARTICLES Share this article Share The poll was commissioned by Asda. Laura Grooby, Asda's book buyer, said: 'First impressions are everything, and even though hundreds of new books are released every week, it is clear the nation never forgets a famous opening line. 'This year, we hope by encouraging everyone to pick up and persevere with a book on World Book Day, children and adults alike will enjoy the pleasures reading can bring.' THE NATION'S TOP 10 MOST MEMORABLE OPENING LINES George Orwell's 1984 (left) and J.R.R. Tolkien's The Fellowship of the Ring both feature on the top ten list 1. 'All children, except one, grow up.' - Peter Pan 2. 'It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair.' - A Tale of Two Cities 3. 'It was a bright cold day in April, and the clocks were striking thirteen.' - 1984 4. 'When Mr Bilbo Baggins of Bag End announced that he would shortly be celebrating his eleventy-first birthday with a party of special magnificence, there was much talk and excitement in Hobbiton.' - The Lord of the Rings: The Fellowship of the Ring 5. 'Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, "and what is the use of a book," thought Alice "without pictures or conversation?"' - Alice in Wonderland 6. 'It is a truth universally acknowledged, that a single man in possession of good fortune must be in want of a wife.' - Pride and Prejudice 7. 'Mr and Mrs Dursley, of number four Privet Drive, were proud to say that they were perfectly normal, thank you very much.' - Harry Potter and the Sorcerer’s Stone 8. 'Here is Edward Bear, coming down the stairs now, bump bump, on the back of his head, behind Christopher Robin.' - Winne-The-Pooh 9. 'My father got the dog drunk on cherry brandy at the party last night.' - Adrian Mole 10. 'The sun did not shine, it was too wet to play, so we sat in the house all that cold, cold wet day.' - The Cat in the Hat</code>                                                                                                                                   |
  | <code>Where in an animal would you find a mandible?</code>                                  | <code>Jaw - definition of jaw by The Free Dictionary Jaw - definition of jaw by The Free Dictionary http://www.thefreedictionary.com/jaw n. 1. a. Either of two bony or cartilaginous structures that in most vertebrates form the framework of the mouth and hold the teeth. b. The mandible or maxilla or the part of the face covering these bones. c. Any of various structures of invertebrates that have an analogous function to vertebrate jaws. 2. Either of two opposed hinged parts in a mechanical device. 3. jaws The walls of a pass, canyon, or cavern. 4. jaws A dangerous situation or confrontation: the jaws of death. 5. Slang a. Impudent argument or back talk: Don't give me any jaw. b. A conversation or chat. intr.v. jawed, jaw·ing, jaws Slang 1. To talk vociferously; jabber. 2. To talk; converse. [Middle English jawe, jowe, perhaps from Old French joue, cheek.] jaw′less adj. (dʒɔː) n 1. (Zoology) the part of the skull of a vertebrate that frames the mouth and holds the teeth. In higher vertebrates it consists of the upper jaw (maxilla) fused to the cranium and the lower jaw (mandible). 2. (Zoology) the corresponding part of an invertebrate, esp an insect 3. (Mechanical Engineering) a pair or either of a pair of hinged or sliding components of a machine or tool designed to grip an object 4. slang c. moralizing talk; a lecture vb a. to talk idly; chat; gossip b. to lecture [C14: probably from Old French joue cheek; related to Italian gota cheek] ˈjawˌlike adj (dʒɔ) n. 1. either of two tooth-bearing bones or bony structures, the mandible or maxilla, forming the framework of the vertebrate mouth. 2. the part of the face covering these bones. 3. jaws, anything resembling a pair of jaws in shape or in power to grasp or hold. 4. one of two or more parts, as of a machine, that grasp or hold something or that attach to or mesh with similar parts. 5. Slang. an idle chat. v.i. 6. Slang. to chat; gossip. [1325–75; Middle English jawe, jowe < Old French joue; orig. uncertain] jaw′less, adj. jaw (jô) 1. Either of two bony or cartilaginous structures that in most vertebrate animals form the framework of the mouth, hold the teeth, and are used for biting and chewing food. The lower, movable part of the jaw is called the mandible. The upper, fixed part is called the maxilla. 2. Any of various structures of invertebrate animals, such as the pincers of spiders or mites, that function similarly to the jaws of vertebrates. jaw I will have been jawing you will have been jawing he/she/it will have been jawing we will have been jawing you will have been jawing they will have been jawing Past Perfect Continuous Noun 1. jaw - the part of the skull of a vertebrate that frames the mouth and holds the teeth bone , os - rigid connective tissue that makes up the skeleton of vertebrates maxilla , maxillary , upper jaw , upper jawbone - the jaw in vertebrates that is fused to the cranium alveolar arch - the part of the upper or lower jawbones in which the teeth are set alveolar process , alveolar ridge , gum ridge - a ridge that forms the borders of the upper and lower jaws and contains the sockets of the teeth skull - the bony skeleton of the head of vertebrates chop - a jaw; "I'll hit him on the chops" 2. jaw - the bones of the skull that frame the mouth and serve to open it; the bones that hold the teeth face , human face - the front of the human head from the forehead to the chin and ear to ear; "he washed his face"; "I wish I had seen the look on his face when he got the news" feature , lineament - the characteristic parts of a person's face: eyes and nose and mouth and chin; "an expression of pleasure crossed his features"; "his lineaments were very regular" 3. jaw - holding device consisting of one or both of the opposing parts of a tool that close to hold an object alligator clip , bulldog clip - a clip with a spring that closes the metal jaws chuck - a holding device consisting of adjustable jaws that center a workpiece in a lathe or center a tool in a drill holding device - a device for holding something pair of pliers , pliers , plyers - a gripping hand</code> |
  | <code>Which team lost the first Super Bowl of the 1980s?</code>                             | <code>Super Bowl History 1980 - 1989 - Superbowl in the 1980's Super            Bowl History 1980 - 1989 Super Bowl XIV Chuck Noll's Pittsburgh Steelers would repeat to win Super Bowl 14 at the Rose Bowl in Pasadena, California on January 20th, 1980 against            Ray Malavasi's LA Rams. Terry Bradshaw took home MVP            for the second straight year as the Steelers won their 4th            Super Bowl before any other team had won three. John Stallworth and Lynn Swan each caught touchdowns, while Franco            Harris ran for two. Dave Elmendorf, Rod Perry, and            Eddie Brown intercepted three Bradshaw passes, but it wasn't            enough. Lawrence McCutcheon connected with Ron Smith on a halfback pass but quarterback Vince Ferragamo couldn't            make the big throw for the Rams. Unsung hero, Larry Anderson,            had 162 return yards setting up the Steeler win, 31-19. Super Bowl XV Tom Flores' Oakland Raiders beat            Dick Vermeil's Philadelphia Eagles, 27-10, in            Super Bowl 15 on January 25th, 1981 at the Louisiana Superdome in New Orleans. Ron Jaworski had 291 yards, but was            intercepted by linebacker Rod Martin three times. Jim Plunkett            threw three touchdowns in Super Bowl Fifteen; an 80 yard            bomb to Kenny King, and two shorter scores to Cliff            Branch. An Eagle defense led by John Bunting and Herman            Edwards couldn't slow Plunkett and Mark Van Eeghen (75 yards).            Ted Hendricks, Matt Millen, Dave Browning, and Martin led            the stout Raider defense. Super Bowl XVI On January 24, 1982 Super Bowl 16 was played            in Pontiac, Michigan at the Pontiac Sliverdome. Bill            Walsh's San Francisco 49ers faced Forrest Gregg's Cincinnati            Bengals. MVP, Joe Montana, inched his Forty-Niners            into Super Bowl Sixteen by completing a last second touchdown            to Dwight Clark in the NFC Title Game, known as "The            Catch". Montana took home MVP honors, throwing one            touchdown to Earl Cooper, while running for another. Ray Wersching            had a Super Bowl record 4 field goals. Ken Anderson            brought the Bengals roaring back with a touchdown run and            pass to Dan Ross. But early turnovers by Chris Collinsworth            and Anderson were too much to overcome as Eric Wright, Lynn Thomas, Ronnie Lott, and Dwight Hicks led San Francisco's defense to victory. Super Bowl XVII On January 30th, 1983, Joe Gibbs' Washington            Redskins beat Don Shula's Miami Dolphins 27-17 at the Rose Bowl in Pasadena, California. Super Bowl            17 MVP, John Riggins, rushed for a record 166 yards, and Joe            Theismann threw two touchdowns, to Alvin Garrett and Charlie            Brown, leading the Redskin comeback in the second half. Miami's 17 Super Bowl Seventeen points came in the first half;            a 76 yard touchdown pass from David Woodley to Jimmy            Cefalo, a short field goal by Uwe Von Schamann, and            a 98 yard kickoff return by Fulton Walker. Vernon            Dean and Mark Murphy led the Washington defense that held            Woodley and Don Strock to 4-17 passing. Super Bowl XVIII Joe Gibbs' Washington Redskins were            back as Defending Champs for Super Bowl 18 in Tampa, Florida on January 30th, 1983. Super Bowl Eighteen was different for            Joe, as Tom Flores' Los Angeles Raiders blew-out Joe            Theismann (2-ints), John Riggins (64-yds) and the rest            of the Redskins, 38-9, in the Super Bowl's most            lops</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.7 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 58.09 tokens</li><li>max: 108 tokens</li></ul> |
* Samples:
  | sentence1                                                                      | sentence2                                                                                                                                                                                                                                                                                                                      |
  |:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are the admission requirements for university of washington?</code> | <code>University of Washington admissions is selective with an acceptance rate of 49%. Students that get into University of Washington have an average SAT score between 1220-1460 or an average ACT score of 27-32. The regular admissions application deadline for University of Washington is November 15.</code>           |
  | <code>why diwali is called festival of lights?</code>                          | <code>Learn about India's biggest holiday of the year. Diwali, or Dipawali, is India's biggest and most important holiday of the year. The festival gets its name from the row (avali) of clay lamps (deepa) that Indians light outside their homes to symbolize the inner light that protects from spiritual darkness.</code> |
  | <code>how connect iphone bluetooth to car?</code>                              | <code>Connect using Bluetooth Go to Settings > Bluetooth, and turn off Bluetooth. Wait for about 5 seconds, then turn Bluetooth back on. Check the manual that came with your car for more information on how to pair with a Bluetooth device. Most cars require a phone setup on the car display.</code>                      |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                      | sentence2                                                                                                                                                      |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>They were there to enjoy us and they were there to pray for us .</code>                                                                                  | <code>They were there for us to enjoy and they were there for us to pray .</code>                                                                              |
  | <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
  | <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code>                                        | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code>                                            |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 160
- `per_device_eval_batch_size`: 64
- `gradient_accumulation_steps`: 8
- `learning_rate`: 4e-05
- `weight_decay`: 0.0001
- `num_train_epochs`: 0.1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.3333333333333335e-05}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-toytest-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 160
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 0.1
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.3333333333333335e-05}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-toytest-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | negation-triplets loss | vitaminc-pairs loss | qasc pairs loss | scitail-pairs-pos loss | gooaq pairs loss | xsum-pairs loss | paws-pos loss | nq pairs loss | msmarco pairs loss | openbookqa pairs loss | trivia pairs loss | sciq pairs loss | NLI-v2_max_accuracy | VitaminC_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:----------------------:|:-------------------:|:---------------:|:----------------------:|:----------------:|:---------------:|:-------------:|:-------------:|:------------------:|:---------------------:|:-----------------:|:---------------:|:-------------------:|:---------------:|:------------------------:|
| 0.0548 | 1    | 6.851         | 5.2593                 | 2.7279              | 7.9013          | 1.9180                 | 8.1263           | 6.3900          | 2.2178        | 10.4461       | 10.6071            | 4.7477                | 7.8702            | 1.1206          | 1.0                 | 0.5179          | 0.0705                   |
| 0.1096 | 2    | 7.0772        | 5.2441                 | 2.6973              | 6.5699          | 1.9754                 | 6.6944           | 6.1687          | 2.3460        | 8.0334        | 7.9983             | 4.5152                | 6.7688            | 0.9838          | 1.0                 | 0.5208          | 0.0894                   |


### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.2
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->